
MPU6050 Over I2C on PSoC 5

Ian Lacy

June 2023

1 Overview

This tutorial shows how to configure the Cypress PSoC 5 to communicate with an MPU6050 Module
using the I2C (Inter-Integrated Circuit, said as “I squared C”) protocol. This tutorial will cover the
basics of I2C and is meant to serve as a quick-start guide to I2C on the PSoC 5.

Accompanying this tutorial is a Cypress Workspace containing three example projects ranging from
bare-bones I2C communication, to a deeper look into the MPU6050’s functionality.

2 Hardware

2.1 PSoC 5LP

The projects “Example 1- I2C Simple Use” and “Example 2- I2C Two-axis” use only the PSoC 5LP
“Stick.” The more thorough example, “Example 3- I2C Kovid Konsole” uses the Kovid Konsole as
built in class.

In Figure 1 below, pins boxed in RED are used in all projects. Pins boxed in BLUE are used only
in Example 3.

Figure 1: The Pins used in this tutorial.

1



2.2 MPU6050 Module

The MPU6060 is a very popular inertial measurement unit (IMU) and is commonly sold on breakout
boards for use with prototyping platforms such as Arduino and Raspberry Pi. These breakout boards
are often referred to as MPU6050s themselves, as is done here. This IMU features three gyroscope
axes to measure angular velocity and three accelerometer axes to measure linear acceleration. It also
features an infrequently-used temperature sensor as well as an auxiliary interface for use with 3rd-party
magnetometer expansion chips. It features an I2C interface, an interrupt pin for data control and frame
synchronization, a digital low-pass filter for the measured data, and an integrated sleep mode. Thanks
to this chip’s ubiquity, ease of use, and simple interface, it will be used as the foundation for these I2C
examples.

Figure 3 below shows the pinout of the MPU6050 Module. Table 1 gives a description of the pins
and their use.

Figure 2: The MPU6050 Module Used in This Example

Figure 3: The Pinout/Wiring Diagram for the MPU6050 Board.

Since this module features an I2C interface, let’s first go over the I2C protocol, its implementation
on PSoC5, and then cover how to use the MPU6050 in particular.

2



Pin Description
VCC +5 V
GND Ground
SCL I2C clock line
SDA I2C data line
XDA Aux. data line
XCL Aux. clock line
AD0 LSB of I2C address
INT Interrupt

Table 1: Pin Descriptions of the MPU6050 Module

3 The I2C Protocol

The I2C protocol, invented in 1982, is intended as a shared-bus protocol for serial communications.
The interface consists of only two wires:

• SCL- Serial Clock. This line controls the timing of the bus.

• SDA- Serial Data. This line carries the data and control signals of the bus.

Typically, these lines are driven as open-drain with a resistive pull-up. In an inactive state, both
lines are high.

All I2C chips on a bus will connect to the same two wires. Chips are divided into two categories-
Masters (also known as Controllers), and Slaves (also known as Targets). Controllers, as the name
implies, control the operation of the I2C bus. They start and end transactions, and send read/write
commands to targets.

3.1 Signalling

Figure 4 shows an example of the timing of I2C signals.

Figure 4: An Example of I2C Timing. See the MPU6050 datasheet for more details.

There are six signals that are used in I2C. They are as follows:

• START Condition- This signals the start of a transaction. It is signalled by SDA transitioning
from high to low while SCL is high.

• STOP Condition - This signals the end of a transaction. It is signalled by SDA transitioning
from low to high while SCL is high.

• RESTART Condition- This is identical to a START signal, but is only signalled after a START
signal has been issued without being followed by a STOP signal

• DATA- This signal is eight clock cycles long, signalling 1 byte of data. The SDA line is sampled
when SCL transitions from low to high. DATA bytes are sent with the least significant bit
first. DATA should always be followed by an ACK or a NAK from the receiving chip.

3



• ACK- Acknowledgement of data received. This is sent by whichever chip is receiving data on
the clock cycle after data is sent onto the bus. SDA is held low while SCL transitions from low
to high.

• NAK- Non-acknowledgement of data received. Also happens on the cycle after data is sent, but
signals that no more data will be requested. SDA is held high while SCL transitions from low to
high.

• W/R+AD- A special DATA signal that follows a START or RESTART signal. It is 1 byte- a
write/read (W/R) bit concatenated with the 7-bit target address (AD). A 0 indicates a write
and a 1 indicates a read. The target address ranges from 0 to 127 (in decimal) and is typically
given in manufacturer datasheets. Sometimes, it can be modified in hardware to support multiple
copies of a certain chip or to prevent conflicts. As with regular DATA signals, W/R+AD is sent
with the least significant bit first.

3.2 Transactions

There are two broad types of transactions: read and write. The exact steps for a transaction (and
types of transaction) vary by chip, so be sure to consult the datasheet.

An example of a simple 1-byte write transaction follows this procedure:

1. The controller sends a START signal

2. The controller sends W+AD

3. The target at address AD sends ACK

4. The controller sends DATA

5. The target sends ACK

6. The controller sends a STOP signal

An example of a simple 1-byte read transaction follows this procedure:

1. The controller sends a START signal

2. The controller sends R+AD

3. The target sends ACK

4. The target sends DATA

5. The controller sends NAK

6. The controller sends a STOP signal

There are more types of transactions. For example, a project may require that a chip writes or
reads multiple bytes in a row from a chip, or that it writes a register address to a chip to then begin
reading from that location. The procedures for these types of transactions may vary by chip. Be sure
to consult the datasheet.

4 I2C on PSoC

PSoC Creator 3.3 includes an I2C Master schematic macro, found in the component catalog under
Cypress > Communications > I2C.

The I2C Master (Fixed Function) component, shown in Figure 4 is used for the example
projects. It has two terminals: scl and sda. These should be routed to pins 12.4 and 12.5 respectively.
You’ll notice these pins are marked as ”I2C[0].scl” and ”I2C[0].sda” in the design-wide resources file,
and they’re intended to be used for this special function. The pins these connect to should be set as
bidirectional pins, with the Drive mode set to ”Resistive pull up”.

4



Figure 5: The I2C Master Schematic Macro Connected to Two Pins Named ‘SCL’ and ‘SDA’

The settings for the I2C Master component have options for data rate and Fixed Function/UDB
implementations. For these projects, the data rate is set to 100 kbps and it is left as a Fixed Function
I2C module in Master mode.

Be sure to enable the I2C master with the I2C MASTER Start() function before
attempting to use it.

Figure 6: The Settings of the I2C Master Schematic Component

5



Figure 7: The Settings of the SDA and SCL Pins

4.1 I2C MASTER API

There are four basic commands used in this project. For more information on the API functions,
consult the component’s datasheet.

The commands are:

• I2C MASTER MasterSendStart(uint8 slaveAddress, uint8 R nW) - This function sends a START
signal to the I2C bus, followed by R/W + AD. slaveAddress is the target address, and R nW is
0 for writing and 1 for reading

• I2C MASTER MasterSendRestart(uint8 slaveAddress, uint8 R nW) - This function sends a
RESTART signal to the I2C bus, followed by R/W + AD. slaveAddress is the target address,
and R nW is 0 for writing and 1 for reading.

• I2C MASTER MasterSendStop(void) - This functions sends a STOP signal to the I2C bus.

• I2C MASTER MasterWriteByte(uint8 theByte) - This function sends DATA over the I2C bus
and waits to receive ACK or NAK from the target.

• I2C MASTER MasterReadByte(uint8 acknNak) - This function receives DATA over the I2C bus
and sends ACK or NAK in response. The parameter should be the I2C MASTER ACK DATA
or I2C MASTER NAK DATA macros for ACK or NAK, respectively.

5 The MPU6050 as an I2C example

The MPU6050’s interface is relatively simple. It has a series of control registers and readout registers,
and reads/writes are done in the same way for all of them. Sequential writes/reads can be done
easily, as the register address pointed to increments after each read or write command. The following
subsections cover the basics of using the interface, the control registers, and the readout registers.

5.1 Communicating with the MPU6050

The MPU6050 has four types of transaction:

• Single Write

• Single Read

6



• Burst Write

• Burst Read

A single write is done as follows:

1. The controller sends a START signal

2. The controller sends W + AD

3. The target sends ACK

4. The controller sends the register address for the write (DATA)

5. The target sends ACK

6. The controller sends DATA to be written

7. The target sends ACK

8. The controller sends a STOP signal

If it’s necessary to write t multiple sequential regsiters, use what’s known as a “burst write”. To
do this, simply repeat steps 6 and 7 for as many registers as need to be written.

A single read is done as follows:

1. The controller sends a START signal

2. the controller sends W + AD

3. The target sends ACK

4. The controller sends the register address for the read (DATA)

5. The target sends ACK

6. The controller sends a RESTART signal

7. The controller sends R + AD

8. The target sends ACK

9. The target sends DATA from the register being read from

10. The controller sends NAK

11. The controller sends a STOP signal

If it’s necessary to read from multiple sequential regsiters, use what’s known as a “burst read”. To
do this, the controller will instead send ACK at step 10 and receive another byte from the target. To
keep receiving bytes, the controller will keep responding with ACK. To signal that no more bytes will
be requested, a NAK is sent by the controller after receiving data, and it is then followed by a STOP
signal.

Charts depicting these transactions can be found in the MPU6050 manufacturer datasheet.

5.2 MPU6050 Control Registers

For more information on the MPU6050 control registers, consult the manufacturer’s Register
Map.

For these example projects, there are 4 relevant control registers on the MPU6050. Their addresses
and purposes are shown in Table 2.

All four of these registers are written to 0x00 for the simple examples. Register 0x1A is written to
0x06 for the showcase example. This enables the digital low-pass filter, setting it to a bandwidth of 5
Hz.

7



Address Description
0x1A CONFIG, controls frame sync and the DLPF
0x1B GYRO CONFIG, controls the gyro configuration, including measurement range
0x1C ACCEL CONFIG, controls the accelerometer configuration, including measurement range
0x23 FIFO EN, controls the FIFO buffer settings
0x6B PWR MGMT 1, controls power settings and sleep mode

Table 2: Descriptions of the Relevant Control Registers of the MPU6050

5.3 MPU6050 Readout Registers

For more information on the MPU6050 readout registers, consult the manufacturer’s Register
Map.

The MPU6050’s readout registers are broken into the 3 accelerometer axes (starting at address
0x3B), the temperature measurement (starting at address 0x41), and the 3 gyro axes (starting at
address 0x43).

All measurements are stored as 16-bit signed integers. To read the full measurement, both reg-
isters for a given value must be read, and then combined in software. Table 3 covers the readout
measurements.

To read multiple axes at once, as done in Examples 2 and 3, simply do a burst read of the axes
needed.

Address Description
0x3B x-accel [15:8]
0x3C x-accel [7:0]
0x3D y-accel [15:8]
0x3E y-accel [7:0]
0x3F z-accel [15:8]
0x40 z-accel [7:0]
0x41 temperature [15:8]
0x42 temperature [7:0]
0x43 x-gyro [15:8]
0x44 x-gyro [7:0]
0x45 y-gyro [15:8]
0x46 y-gyro [7:0]
0x47 z-gyro [15:8]
0x48 z-gyro [7:0]

Table 3: The Readout Registers of the MPU6050

8



6 Example Projects

This section covers the operation of the example projects. Figure 8 shows the build for “Example 3-
I2C Kovid Konsole.” The wiring for Examples 1 and 2 are largely the same, simply remove the LED
bank and switch bank.

Figure 8: The Kovid Konsole I2C build.

These example projects are designed to be done in order, and each builds off of the
previous project. To switch between projects in the workspace, right-click a project name and click
“Set As Active Project”.

Double-check your wiring. Ensure that pin 12.4 on the PSoC is connected to SCL on the MPU6050
and that pin 12.5 on the PSoC is connected to SDA on the MPU6050. Ensure that the MPU6050 is
hooked up to 5V and ground. Refer back to Figure 3 for the wiring diagram of the MPU6050.

Also to note: In Figures 3 and 8, the AD0 pin on the MPU6050 is tied to ground. This is not
strictly necessary, as in theory AD0 should be resistively pulled to ground on the module, but it has
been done here in case it is not done on the module.

6.1 Example 1: 1-axis Accelerometer

This example is a bare-bones showcase and uses only the x-axis accelerometer. It uses the MPU6050
and the PSoC 5LP’s on-board LED. When the reading given by the MPU is above .25 gee, the on-board
LED (pin 2.1) is on. Otherwise, the LED is off.

To toggle the light, tilt the board with and against the x-axis marked on the board.

6.2 Example 2: 2-axis Accelerometer

This example shows the use of multiple axes of the accelerometer. It uses the MPU6050 and the PSoC
5LP’s on-board LED. When the reading from the x-axis is above .25 gee and is higher than the reading
from the y-axis, the light turns on. When the reading from the y axis is above .25 gee and is higher
than the reading from the x-axis, the light blinks. Otherwise, the light turns off.

To change the light, tilt the board along and against the x and y axes.

6.3 Example 3: Kovid Konsole MPU6050 Showcase

This example uses the Kovid Konsole as built in class, and the MPU6050. It also makes use of the
on-board LED (pin 2.1) and the on-board button (pin 2.2)

For this example, there are three modes:

• Mode 1- Tilt- In this mode, the acceleration of each axis is read and represented on the LED
bank. From left to right, the LEDS represent acceleration in the +x, -x, +y, -y, +z, -z directions,

9



respectively. Leaving the Kovid Konsole flat on the table should light up the fifth LED from the
left, indicating an acceleration in the +z direction (up)1.

• Mode 2- Spin- In this mode, the angular velocity of each axis is read and represented on the
LED bank. From left to right, the LEDS represent an angular velocity on the +x, -x, +y, -y,
+z, -z directions, respectively. Note that angular velocity points along the axis of the rotation
in accordance with the right-hand rule. Leaving the Kovid Konsole flat on the table should light
up no LEDS.

• Mode 3- Acceleration- In this mode, the acceleration of each axis is read, and the magnitude
of the sum of the vectors is represented on the LED bank. This magnitude is represented as a
6-bit value (0-63), with 32 representing 1 gee. The LSB is the left-most LED in the bank, and
the MSB is the sixth LED from the left. Leaving the Kovid Konsole flat on the table should light
up the sixth LED from the left, but may also cause the first LED to flicker due to measurement
and computational inaccuracy.

On power-up, the Kovid Konsole will be in Mode 1- Tilt. Push the on-board button to cycle
through these modes in order. The on-board LED represents the status of the on-board button, for
the purpose of troubleshooting. The LED should remain on while the button is not depressed, and
should turn off when the button is depressed.

Additionally, there are a couple things of note in this example. The enumeration of state variables,
the mode t, as well as the MPU data struct, MPU DATA t, help to keep the code readable and clean.
For more complicated uses of readings from things like this, consider using structs and enumerations
to keep things clear.

7 References/Resources

1. MPU6050 Chip Datasheet- I2C Timing, Transaction charts- https://invensense.tdk.com/

wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

2. MPU6050 Register Map- Registers and config- https://invensense.tdk.com/wp-content/

uploads/2015/02/MPU-6000-Register-Map1.pdf

1“But wait! Gravity accelerates us down!” you might say. That’s true in Newtonian mechanics, but General Relativity
says that our geodesic points toward the center of the earth, and that the normal force from the earth causes us to deviate
from that geodesic and not fall.

10

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

	Overview
	Hardware
	PSoC 5LP
	MPU6050 Module

	The I2C Protocol
	Signalling
	Transactions

	I2C on PSoC
	I2C_MASTER API

	The MPU6050 as an I2C example
	Communicating with the MPU6050
	MPU6050 Control Registers
	MPU6050 Readout Registers

	Example Projects
	Example 1: 1-axis Accelerometer
	Example 2: 2-axis Accelerometer
	Example 3: Kovid Konsole MPU6050 Showcase

	References/Resources

