
3

3

PICC Lite C Manual

Copyright ©2004 HI-TECH Software.
All Rights Reserved. Printed in Australia.

Seventh Printing (c), September 2004

HI-TECH Software
A division of Gretetoy Pty. Ltd. ACN 002 724 549

PO Box 103
Alderley QLD 4051

Australia

Email:hitech@htsoft.com
Web:http://www.htsoft.com/

FTP:ftp.htsoft.com

 4

 3

 2

 5

 6

 7

 1

 8

 9Library Functions

Introduction

Tutorials

Using HTLPIC

Command Line Compiler Driver

Features and Runtime Environment

PICC Lite Macro Assembler

Linker and Utilities Reference Manual

Error Messages

Contents

1

1 - Introduction - 15

1.1 Compiler Limitations - 15
1.2 Typographic conventions - 15
1.3 Using This Manual - 15

2 - Tutorials - 17

2.1 Overview of the compilation process - 17
2.1.1 Compilation - 17
2.1.2 The compiler input - 18

2.1.2.1 Steps before linking - 21
2.1.2.2 The link stage - 27

2.2 Psects and the linker - 29
2.2.1 Psects - 29

2.2.1.1 The psect directive - 30
2.2.1.2 Psect types - 31

2.3 Linking the psects - 32
2.3.1 Grouping psects - 33
2.3.2 Positioning psects - 33
2.3.3 Linker options to position psects - 34

2.3.3.1 Placing psects at an address - 34
2.3.3.2 Exceptional cases - 37
2.3.3.3 Psect classes - 38
2.3.3.4 User-defined psects - 40

2.3.4 Issues when linking- 41
2.3.4.1 Paged memory - 41
2.3.4.2 Separate memory areas - 42
2.3.4.3 Objects at absolute addresses - - - - - - - - - - - - - - - - - - - 43

2.3.5 Modifying the linker options - 44
2.4 Addresses used with the PIC - 45

2.4.1 Code addresses - 46
2.4.2 Data addresses - 46
2.4.3 Bit addresses - 49
HI-TECH PICC Lite compiler 1

3 - Using HTLPIC - 51

3.1 Introduction - 51
3.1.1 Starting HTLPIC - 51

3.2 The HI-TECH Windows User Interface - 52
3.2.1 Environment variables - 52
3.2.2 Hardware Requirements - 52
3.2.3 Colours - 53
3.2.4 Pull-Down Menus - 53

3.2.4.1 Keyboard Menu Selection - 54
3.2.4.2 Mouse Menu Selection - 55
3.2.4.3 Menu Hot Keys - 56

3.2.5 Selecting windows - 56
3.2.6 Moving and Resizing Windows - 58
3.2.7 Buttons - 59
3.2.8 The Setup menu - 59

3.3 Tutorial: Creating and Compiling a C Program - 60
3.4 The HTLPIC editor - 66

3.4.1 Frame - 66
3.4.2 Content Region - 66
3.4.3 Status Line - 66
3.4.4 Keyboard Commands - 67
3.4.5 Block Commands - 69
3.4.6 Clipboard Editing - 71

3.4.6.1 Selecting Text - 71
3.4.6.2 Clipboard Commands - 72

3.5 HTLPIC menus - 73
3.5.1 <<>> menu - 73
3.5.2 File menu - 73
3.5.3 Edit menu- 74
3.5.4 Options menu - 77
3.5.5 Compile menu - 79
3.5.6 Make menu - 81
3.5.7 Run menu- 85
3.5.8 Utility menu - 85
3.5.9 Help menu - 88
2

Contents

1

4 - Command Line Compiler Driver - - - - - - - - - - - - - - - 91

4.1 Long Command Lines - 91
4.2 Default Libraries - 92
4.3 Standard Run-Time Code - 92
4.4 PICL Compiler Options - 92

4.4.1 -processor: Define processor - 94
4.4.2 -Aspec: Specify offset for ROM- 94
4.4.3 -A-option: Specify Extra Assembler Option - - - - - - - - - - - - - - - - - 94
4.4.4 -AAHEX: Generate American Automation Symbolic Hex - - - - - - - - - - 94
4.4.5 -ASMLIST: Generate Assembler .LST Files - - - - - - - - - - - - - - - - - 95
4.4.6 -BIN: Generate Binary Output File - 95
4.4.7 -C: Compile to Object File - 95
4.4.8 -CKfile: Generate Check Sum- 95
4.4.9 -CRfile: Generate Cross Reference Listing - - - - - - - - - - - - - - - - - - 95
4.4.10 -D24: Use 24-bit Doubles - 96
4.4.11 -D32: Use 32-bit Doubles - 96
4.4.12 -Dmacro: Define Macro - 96
4.4.13 -E: Define Format for Compiler Errors - - - - - - - - - - - - - - - - - - - 96

4.4.13.1 Using the -E Option - 97
4.4.13.2 Modifying the Standard -E Format - - - - - - - - - - - - - - - - 97
4.4.13.3 Redirecting Errors to a File - 98

4.4.14 -Efile: Redirect Compiler Errors to a File - - - - - - - - - - - - - - - - - - 98
4.4.15 -FAKELOCAL - 99
4.4.16 -Gfile: Generate Source Level Symbol File - - - - - - - - - - - - - - - - - 99
4.4.17 -HELP: Display Help - 99
4.4.18 -ICD - 99
4.4.19 -Ipath: Include Search Path - 100
4.4.20 -INTEL: Generate INTEL Hex File - - - - - - - - - - - - - - - - - - - 100
4.4.21 -Llibrary: Scan Library - 100

4.4.21.1 Printf with Additional Support for Longs and Floats - - - - - - - -100
4.4.22 -L-option: Specify Extra Linker Option- - - - - - - - - - - - - - - - - - 101
4.4.23 -Mfile: Generate Map File - 101
4.4.24 -MOT: Generate Motorola S-Record HEX File - - - - - - - - - - - - - - 101
4.4.25 -MPLAB: Compile and Debug using MPLAB IDE - - - - - - - - - - - - 101
4.4.26 -Nsize: Identifier Length- 102
4.4.27 -NORT: Do Not Link Standard Runtime Module - - - - - - - - - - - - - 102
4.4.28 -NO_STRING_PACK: Disable string packing optimizations - - - - - - - 102
HI-TECH PICC Lite compiler 3

4.4.29 -O: Invoke Optimizer- 102
4.4.30 -Ofile: Specify Output File - 102
4.4.31 -P: Pre-process Assembly Files - 102
4.4.32 -PRE: Produce Pre-processed Source Code - - - - - - - - - - - - - - - - 103
4.4.33 -PROTO: Generate Prototypes - 103
4.4.34 -PSECTMAP: Display Complete Memory Usage - - - - - - - - - - - - - 104
4.4.35 -q: Quiet Mode- 104
4.4.36 -RESRAMranges[,ranges] - 105
4.4.37 -RESROMranges[,ranges] - 105
4.4.38 -S: Compile to Assembler Code- 105
4.4.39 -SIGNED_CHAR: Make Char Type Signed - - - - - - - - - - - - - - - - 105
4.4.40 -STRICT: Strict ANSI Conformance - - - - - - - - - - - - - - - - - - - 105
4.4.41 -TEK: Generate Tektronix HEX File - - - - - - - - - - - - - - - - - - - 106
4.4.42 -Umacro: Undefine a Macro - 106
4.4.43 -UBROF: Generate UBROF Format Output File - - - - - - - - - - - - - - 106
4.4.44 -V: Verbose Compile- 106
4.4.45 -Wlevel: Set Warning Level - 106
4.4.46 -X: Strip Local Symbols - 106
4.4.47 -Zg[level]: Global Optimization - 106

5 - Features and Runtime Environment - - - - - - - - - - - - - 109

5.1 Divergence from the ANSI C Standard - 109
5.2 Processor Support - 109
5.3 Standard Libraries - 109

5.3.1 Limitations of Printf - 110
5.4 Output File Formats - 110
5.5 Symbol Files - 111
5.6 Predefined Macros - 111
5.7 Header File Definitions - 111
5.8 Configuration Fuses - 113
5.9 ID Locations - 113
5.10 EEPROM Data - 114
5.11 Bit Instructions - 114
5.12 Supported Data Types - 115

5.12.1 Radix Specifiers and Constants - 115
5.12.2 Bit Data Types - 117

5.12.2.1 Using Bit-Addressable Registers - - - - - - - - - - - - - - - - - 117
4

Contents

1

5.12.3 8-Bit Integer Data Types- 118
5.12.4 16-Bit Integer Data Types - 118
5.12.5 32-Bit Integer Data Types - 118
5.12.6 Floating Point - 119

5.13 Absolute Variables -120
5.14 Structures and Unions -120

5.14.1 Structure Qualifiers - 120
5.14.2 Bit Fields in Structures - 121

5.15 Strings In ROM and RAM - -122
5.16 Const and Volatile Type Qualifiers - -122
5.17 Placement and access of ROM objects -123

5.17.1 Midrange PICs - 123
5.18 Special Type Qualifiers -123

5.18.1 Persistent Type Qualifier - 124
5.18.2 Bank1 Type Qualifier - 124

5.19 Pointers - -124
5.19.1 Midrange Pointers- 125
5.19.2 Combining Type Qualifiers and Pointers - - - - - - - - - - - - - - - - - 125
5.19.3 Const Pointers - 126

5.20 Implementation-defined behaviour -126
5.20.1 Shifts applied to integral types - 126
5.20.2 Division and modulus with integral types - - - - - - - - - - - - - - - - - 127
5.20.3 Integral Promotion - 127

5.21 Interrupt Handling in C -129
5.21.1 Midrange Interrupt Functions - 129
5.21.2 Context Saving on Interrupts- 129

5.21.2.1 MidRange Context Saving -130
5.21.3 Context Retrieval - 130
5.21.4 Interrupt Levels - 130
5.21.5 Enabling Interrupts - 131

5.22 Mixing C and Assembler Code - -132
5.22.1 External Assembly Language Functions - - - - - - - - - - - - - - - - - 132
5.22.2 Accessing C objects from within assembler - - - - - - - - - - - - - - - - 133
5.22.3 #asm, #endasm and asm() - 134

5.23 Signature Checking -134
5.24 Linking Programs -135
5.25 Memory Usage -136
5.26 Register Usage -136
HI-TECH PICC Lite compiler 5

5.27 Function Argument Passing - 136
5.28 Function Return Values - 137

5.28.1 8-Bit Return Values - 138
5.28.2 16-Bit and 32-bit Return Values - 138
5.28.3 Structure Return Values - 138

5.29 Function Calling Convention - 139
5.30 Local Variables - 139

5.30.1 Auto Variables - 139
5.30.2 Static Variables - 140

5.31 Compiler Generated Psects - 140
5.32 Runtime startup Modules - 142

5.32.1 The powerup Routine - 144
5.33 Linker-Defined Symbols - 145
5.34 Preprocessor Directives - 145
5.35 Pragma Directives - 145

5.35.1 The #pragma jis and nojis Directives - - - - - - - - - - - - - - - - - - - 145
5.35.2 The #pragma printf_check Directive - - - - - - - - - - - - - - - - - - - 145
5.35.3 The #pragma psect Directive - 147
5.35.4 The #pragma regsused Directive - 149

5.35.4.1 The #pragma switch Directive - - - - - - - - - - - - - - - - - - 149
5.36 Standard I/O Functions and Serial I/O - 150
5.37 MPLAB-specific Debugging Information - 150

6 - PICC Lite Macro Assembler- - - - - - - - - - - - - - - - - 153

6.1 Assembler Usage - 153
6.2 Assembler Options - 153
6.3 PIC Assembly Language - 156

6.3.1 Additional Mnemonics - 156
6.3.2 Assembler Format Deviations - 156
6.3.3 Character Set - 156
6.3.4 Constants - 156

6.3.4.1 Numeric Constants - 156
6.3.4.2 Character Constants - 157

6.3.5 Delimiters - 157
6.3.6 Special Characters- 157
6.3.7 Identifiers- 157

6.3.7.1 Significance of Identifiers - 158
6

Contents

1

6.3.7.2 Assembler-Generated Identifiers - - - - - - - - - - - - - - - - - -158
6.3.7.3 Location Counter -158
6.3.7.4 Register Symbols -158
6.3.7.5 Labels -158
6.3.7.6 Symbolic Labels -158
6.3.7.7 Numeric Labels -159

6.3.8 Strings - 160
6.3.9 Expressions - 160
6.3.10 Statement Format - 160
6.3.11 Program Sections - 160
6.3.12 Assembler Directives - 162

6.3.12.1 GLOBAL -164
6.3.12.2 END -164
6.3.12.3 PSECT -164
6.3.12.4 ORG -166
6.3.12.5 EQU -166
6.3.12.6 SET - -166
6.3.12.7 DEFL -166
6.3.12.8 DB -166
6.3.12.9 DW -167
6.3.12.10 DS - -167
6.3.12.11 FNADDR -167
6.3.12.12 FNARG -167
6.3.12.13 FNBREAK - -168
6.3.12.14 FNCALL - -168
6.3.12.15 FNCONF - -168
6.3.12.16 FNINDIR -169
6.3.12.17 FNSIZE -169
6.3.12.18 FNROOT - -169
6.3.12.19 IF, ELSEIF, ELSE and ENDIF - - - - - - - - - - - - - - - - -169
6.3.12.20 MACRO and ENDM -170
6.3.12.21 LOCAL -171
6.3.12.22 ALIGN - -172
6.3.12.23 REPT -172
6.3.12.24 IRP and IRPC -172
6.3.12.25 PAGESEL -174
6.3.12.26 PROCESSOR -174
6.3.12.27 SIGNAT -174
HI-TECH PICC Lite compiler 7

6.3.13 Macro Invocations - 174
6.3.14 Assembler Controls - 175

6.3.14.1 COND - 175
6.3.14.2 GEN - 175
6.3.14.3 INCLUDE - 175
6.3.14.4 LIST - 176
6.3.14.5 NOCOND - 176
6.3.14.6 NOGEN - 176
6.3.14.7 NOLIST - 176
6.3.14.8 TITLE - 176
6.3.14.9 PAGELENGTH - 176
6.3.14.10 PAGEWIDTH - 176
6.3.14.11 SUBTITLE - 177

7 - Linker and Utilities Reference Manual - - - - - - - - - - - - 179

7.1 Introduction - 179
7.2 Relocation and Psects - 179
7.3 Program Sections - 179
7.4 Local Psects - 180
7.5 Global Symbols - 180
7.6 Link and load addresses - 180
7.7 Operation - 181

7.7.1 Numbers in linker options - 182
7.7.2 -Aclass=low-high,... - 182
7.7.3 -Cx - 183
7.7.4 -Cpsect=class - 183
7.7.5 -Dclass=delta - 183
7.7.6 -Dsymfile - 183
7.7.7 -Eerrfile - 183
7.7.8 -F - 183
7.7.9 -Gspec - 184
7.7.10 -Hsymfile - 184
7.7.11 -H+symfile - 184
7.7.12 -Jerrcount - 184
7.7.13 -K - 185
7.7.14 -I - 185
7.7.15 -L - 185
8

Contents

1

7.7.16 -LM - 185
7.7.17 -Mmapfile - 185
7.7.18 -N, -Ns and-Nc - 185
7.7.19 -Ooutfile - 185
7.7.20 -Pspec - 185
7.7.21 -Qprocessor - 187
7.7.22 -S - 187
7.7.23 -Sclass=limit[, bound] - 187
7.7.24 -Usymbol - 188
7.7.25 -Vavmap - 188
7.7.26 -Wnum - 188
7.7.27 -X - 188
7.7.28 -Z - 188

7.8 Invoking the Linker - -188
7.9 Map Files -189

7.9.1 Call Graph Information - 190
7.10 Librarian -192

7.10.1 The Library Format - 192
7.10.2 Using the Librarian - 193
7.10.3 Examples - 194
7.10.4 Supplying Arguments - 194
7.10.5 Listing Format - 194
7.10.6 Ordering of Libraries - 195
7.10.7 Error Messages - 195

7.11 Objtohex -195
7.11.1 Checksum Specifications - 195

7.12 Cref -196
7.12.1 -Fprefix- 197
7.12.2 -Hheading - 197
7.12.3 -Llen - 197
7.12.4 -Ooutfile - 197
7.12.5 -Pwidth - 198
7.12.6 -Sstoplist - 198
7.12.7 -Xprefix - 198

7.13 Cromwell - -198
7.13.1 -Pname - 199
7.13.2 -D - 199
7.13.3 -C - 199
HI-TECH PICC Lite compiler 9

7.13.4 -F - 200
7.13.5 -Okey - 200
7.13.6 -Ikey - 200
7.13.7 -L - 200
7.13.8 -E - 200
7.13.9 -B - 200
7.13.10 -M - 200
7.13.11 -V - 200

7.14 Memmap - 200
7.14.1 Using MEMMAP - 201

7.14.1.1 -P - 201
7.14.1.2 -Wwid - 201

8 - - 201

9 - Error Messages - 203

10 - Library Functions - 259

11 - Index - 333
10

List of Tables

1

Table 2 - 1 - Configuration files . 18
Table 2 - 2 - Input file types . 20
Table 2 - 3 - clist output . 21
Table 2 - 4 - preprocessor output. 22
Table 2 - 6 - Parser output . 23
Table 2 - 5 - Intermediate and Support files . 23
Table 2 - 7 - Code generator output. 24
Table 2 - 8 - Assembler output . 26
Table 2 - 9 - Assembler listing . 27
Table 2 - 10 - Output formats . 29
Table 3 - 1 - Colour values . 54
Table 3 - 2 - Colour attributes . 54
Table 3 - 3 - Colour coding settings . 55
Table 3 - 4 - Menu system key and mouse actions . 55
Table 3 - 5 - HTLPIC menu hot keys . 57
Table 3 - 6 - Resize mode keys . 58
Table 3 - 7 - Editor keys . 68
Table 3 - 8 - Block operation keys . 69
Table 3 - 9 - Macros usable in user commands . 88
Table 4 - 1 - PICL File Types . 91
Table 4 - 2 - PICL Options . 93
Table 4 - 3 - Error Format Specifiers . 97
Table 5 - 1 - Output File Formats . 111
Table 5 - 2 - Predefined CPP Symbols . 112
Table 5 - 3 - Data Types . 115
Table 5 - 4 - Radix Formats. 116
Table 5 - 5 - Floating Point Formats . 119
Table 5 - 6 - IEEE 754 32-bit and 24-bit Examples . 119
Table 5 - 7 - Integral division . 127
Table 5 - 8 - Preprocessor directives . 146
Table 5 - 9 - Pragma Directives. 147
Table 5 - 10 - Valid regsused Register Names . 149
Table 5 - 11 - Supported STDIO Functions . 150
HI-TECH PICC Lite compiler 11

Table 6 - 1 - ASPIC Assembler options . 154
Table 6 - 2 - ASPIC Numbers and bases . 157
Table 6 - 3 - Operators. 161
Table 6 - 4 - ASPIC Statement formats . 161
Table 6 - 5 - ASPIC Directives (pseudo-ops) . 163
Table 6 - 6 - PSECT flags . 164
Table 6 - 7 - ASPIC Assembler controls . 175
Table 6 - 8 - LIST Control Options . 176
Table 7 - 1 - Linker Options . 181
Table 7 - 2 - Librarian Options . 193
Table 7 - 3 - Librarian Key Letter Commands . 193
Table 7 - 4 - Objtohex Options . 196
Table 7 - 5 - Cref Options . 197
Table 7 - 6 - Format Types . 198
Table 7 - 7 - Cromwell Options . 199
Table 7 - 8 - Memmap options . 201
12

 List of Figures

1

Figure 2 - 1 - Compilation overview . 19
Figure 3 - 1 - HTLPIC Startup Screen. 51
Figure 3 - 2 - Setup Dialogue . 60
Figure 3 - 3 - LED Flashing program in HTLPIC. 62
Figure 3 - 4 - HTLPIC File Menu . 63
Figure 3 - 5 - Error window. 64
Figure 3 - 6 - HTLPIC Edit Menu . 75
Figure 3 - 7 - Options Menu . 77
Figure 3 - 8 - HTLPIC Compile Menu . 79
Figure 3 - 9 - HTLPIC Make Menu. 82
Figure 3 - 10 - HTLPIC Run Menu . 86
Figure 3 - 11 - HTLPIC Utility Menu . 87
Figure 3 - 12 - HTLPIC Help Menu . 89
Figure 5 - 1 - PIC Standard Library Naming Convention 110
HI-TECH PICC Lite compiler 13

14

 1
Introduction

1.1 Compiler Limitations
This is the PICC manual altered for use with the Lite version of the PICC Compiler. The PICC Lite was
designed primarily for the use of students and hobbiests who needed an inexpensive PIC compiler, for
educational and small projects. The compiler itself is limited to only the 16C84, 16F84, 16F84A,
16F627, 16F627A, 12F629, 12F675, 16F684, 16F877 and the 16F877A Microchip processors, it does
not come with any library source code, there is a limitation of two ram banks for general purpose ram
applicable to the 16F627, 16F627A, 16F877 and 16F877A and one bank for the 16F684. There is also
a rom size limitation of 2k with the 16F877 and 16F877A and 1K with the 16F684. You can perform 24
or 32 bit float calculations, though there is no support for printing (printf) long or float numbers.

1.2 Typographic conventions
Throughout this manual computer prompts, responses, file names and code will be printed in
constant spaced type. Particularly useful points and new terms will be emphasised using
italicised type. With a window based program like HPD, some concepts are difficult to convey in text.
These will be introduced using short tutorials and sample screen displays with references to menu items
in bold.

1.3 Using This Manual
This manual is a comprehensive guide and reference to using PICC Lite. The chapters included are as
follows:

! Tutorials to aid in the understanding and usage of HI-TECH’s C cross compilers

! How to use the HI-TECH Professional Development (HPD) environment

! How to use the PICC Lite command-line interface

! In-depth description of the C compiler

! How to use the assembler

! How to use the linker and other utilities
HI-TECH PICC Lite compiler 15

Introduction

 1
16

 2
Tutorials

The following are tutorials to aid in the understanding and usage of HI-TECH’s C cross compilers.
These tutorials should be read in conjunction with the appropriate sections in the manual as they are
aimed at giving a general overview of certain aspects of the compiler. Some of the tutorials here are
generic to all HI-TECH C compilers and may include information not specific for the compiler you are
using.

2.1 Overview of the compilation process

This tutorial gives an overview of the compilation process that takes place with HI-TECH C compilers
in terms of how the input source files are processed. The origin of files that are produced by the compiler
is discussed as well as their content and function.

2.1.1 Compilation

When a program is compiled, it is done so by many separate applications whose operations are
controlled by either the command-line driver (CLD) or HPD driver1 (HPD). In either case, HPD or the
CLD take the options specified by the programmer (menu options in the case of HPD, or command-line
arguments for the CLD) to determine which of the internal applications need to be executed and what
options should be sent to each. When the term compiler is used, this is intended to denote the entire
collection of applications and driver that are involved in the process. In the same way, compilation refers
to the complete transformation from input to output by the compiler. Each application and its function
is discussed further on in this document.

The compiler drivers use several files to store options and information used in the compilation process
and these file types are shown in Table 2 - 1 on page 18. The HPD driver stores the compiler options
into a project file which has a .prj extension. HPD itself stores its own configurational settings in an
INI file, e.g. HPD51.ini in the BIN directory of your distribution. This file stores information such as
colour values and mouse settings. Users who wish to use the CLD can store the command line arguments
in a DOS batch file.

Some compilers come with chip info files which describe the memory arrangements of different chip
types. If necessary this file can be edited to create new chip types which can then be selected with the
appropriate command-line option of from the select processor... menu. This file will also have a .ini
extension and is usually in the LIB directory.

1. The command line driver and HPD driver have processor-specific names, such as PICC, C51, or HPDXA, HPDPIC
etc.
HI-TECH PICC Lite compiler 17

Tutorials

 2
The compilation process is discussed in the following sections both in terms of what takes place at each
stage and the files that are involved. Reference should be made to Figure 2 - 1 on page 19 which shows
the block diagram of the internal stages of the HI-TECH compiler, and the tables of file types throughout
this tutorial which list the filename extension2 used by different file formats and the information which
the file contains. Note that some older HI-TECH compilers do not include all the applications discussed
below.

The internal applications generate output files and pass these to the next application as indicated in the
figure. The arrows from one application (drawn as ellipses) to another is done via temporary files that
have non-descriptive names such as $$003361.001. These files are temporarily stored in a directory
pointed to by the DOS environment variable TEMP. Such a variable is created by a set DOS command.
These files are automatically deleted by the driver after compilation has been completed.

2.1.2 The compiler input

The user supplies several things to the compiler to make a program: the input files and the compiler
options, whether using the CLD or HPD. The compiler accepts many different input file types. These
are discussed below.

It is possible, and indeed in a large number of projects, that the only files supplied by the user are C
source files and possibly accompanying header files. It is assumed that anyone using our compiler is
familiar with the syntax of the C language. If not, there is a seemingly endless selection of texts which
cover this topic. C source files used by the HI-TECH compiler must use the extension .c as this
extension is used by the driver to determine the file's type. C source files can be listed in any order on
the command line if using the CLD, or entered into the source file list... dialogue box if using HPD.

A header file is usually a file which contains information related to the program, but which will not
directly produce executable code when compiled. Typically they include declarations (as opposed to
definitions) for functions and data types. These files are included into C source code by a preprocessor
directive and are often called include files. Since header files are referenced by a command that includes

2. The extensions listed in these tables are in lower case. DOS compilers do not distinguish between upper- and lower-
case file names and extensions, but in the interest of writing portable programs you should use lower-case exten-
sions in file names and in references to these files in your code as UNIX compilers do handle case correctly.

Table 2 - 1 Configuration files

extension name contents
.prj project file compiler options stored by HPD driver
.ini HPD initialisation file HPD environment settings
.bat batch file command line driver options stored as DOS batch file
.ini chip info file information regarding chip families
18

Overview of the compilation process

 2
the file's name and extension (and possibly a path), there are no restrictions as to what this name can be
although convention dictates a .h extension.

Although executable C code may be included into a source file, a file using the extension .h is assumed
to have non-executable content. Any C source files that are to be included into other source files should
still retain a .c extension. In any case, the practise of including one source file into another is best
avoided as it makes structuring the code difficult, and it defeats many of the advantages of having a

Figure 2 - 1 Compilation overview
HI-TECH PICC Lite compiler 19

Tutorials

 2
compiler capable of handling multiple-source files in the first place. Header files can also be included
into assembler files. Again, it is recommended that the files should only contain assembler declarations.

HI-TECH compilers comes with many header files which are stored in a separate directory of the
distribution. Typically user-written header files are placed in the directory that contains the sources for
the program. Alternatively they can be placed into a directory which can be searched by using a -I (CPP
include paths...) option.

An assembler file contains assembler mnemonics which are specific to the processor for which the
program is being compiled. Assembler files may be derived from C source files that have been
previously compiled to assembler, or may be hand-written and highly-prized works of art that the
programmer has developed. In either case, these files must conform to the format expected of the HI-
TECH assembler that is part of the compiler. This processor-dependence makes assembly files quite un-
portable and they should be avoided if C source can be made to perform the task at hand. Assembler files
must have a .as extension as this is used by the compiler driver to determine the file’s type. Assembler
files can be listed in any order on the command line if using the CLD, or entered into the source file
list... dialogue box if using HPD, along with the C source files.

The compiler drivers can also be passed pre-compiled HI-TECH object files as input. These files are
discussed below in Section 2.1.2.1 on page 21. These files must have a .obj extension. Object files can
be listed in any order on the command line if using the CLD, or entered into the object file list... dialogue
box if using HPD. You should not enter the names of object files here that have been compiled from
source files already in the project, only include object files that have been pre-compiled and have no
corresponding source in the project, such as the run-time file. For example, if you have included init.c
into the project, you should not include init.obj into the object file list.

Commonly used program routines can be compiled into a file called a library file. These files are more
convenient to handle and can be accessed quickly by the compiler. The compiler can accept library files
directly like other source files. A .lib extension indicates the type of the file and so library files must

Table 2 - 2 Input file types

extension name content
.c C source file C source conforming to the ANSI standard possibly with

extensions allowed by HI-TECH C
.h header file C/assembler declarations
.as assembler file assembler source conforming to the HI-TECH assembler format
.obj (relocatable)

object file
pre-compiled C or assembler source as HI-TECH relocatable
object file

.lib library file pre-compiled C or assembler source in HI-TECH library format
20

Overview of the compilation process

 2
be named in this way. Library files can be listed in any order on the command line if using the CLD, or
entered into the library file list... dialogue box if using HPD.

The HI-TECH library functions come pre-compiled in a library format and are stored in the LIB
directory in your distribution.

2.1.2.1 Steps before linking

Of all the different types of files that can be accepted by the compiler, it is the C source files that require
the most processing. The steps involved in compiling the C source files are examined first.

For each C source file, a C listing file is produced by an application called CLIST. The listing files
contain the C source lines proceeded by a line number before any processing has occurred. The C listing
for a small test program called main.c is shown in Table 2 - 3 on page 21.

The input C source files are also passed to the preprocessor, CPP. This application has the job of
preparing the C source for subsequent interpretation. The tasks performed by CPP include removing
comments and multiple spaces (such as tabs used in indentation) from the source, and executing any
preprocessor directives in the source. Directives may, for example, replace macros with their
replacement text (e.g. #define directives) or conditionally include source code subject to certain
conditions (e.g. #if, #ifdef etc. directives). The preprocessor also inserts header files, whether user-
or compiler-supplied, into the source. Table 2 - 4 on page 22 shows preprocessor output for the test
program.

The output of the preprocessor is C source, but it may contain code which has been included by the
preprocessor from header files and conditional code may have been omitted. Thus the preprocessor
output usually contains similar, but different code to the original source file. The preprocessor output is
often referred to as a module or translational unit. The term "module" is sometimes used to describe the
actual source file from which the "true" module is created. This is not strictly correct, but the meaning
is clear enough.

Table 2 - 3 clist output

C source C listing
#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

1: #define VAL 2
2:
3: int a, b = 1;
4:
5: void
6: main(void)
7: {
8: /* set starting value */
9: a = b + 2;
10: }
HI-TECH PICC Lite compiler 21

Tutorials

 2
The code generation that follows operates on the CPP output module, not the C source and so special
steps must be taken to be able to reconcile errors and their position in the original C source files. The #
1 main.c line in the preprocessor output for the test program is included by the preprocessor to indicate
the filename and line number in the C source file that corresponds to this position. Notice in this example
that the comment and macro definition have been removed, but blank lines take their place so that line
numbering information is kept intact.

Like all compiler applications, the preprocessor is controlled by the compiler driver (either the CLD or

HPD). The type of information that the driver supplies the preprocessor includes directories to search
for header files that are included into the source file, and the size of basic C objects (such as int,
double, char *, etc.) using the -S, -SP options so that the preprocessor can evaluate preprocessor
directives which contain a sizeof(type) expression. The output of the preprocessor is not normally
seen unless the user uses the -PRE option in which case the compiler output can then be re-directed to
file.

The output of CPP is passed to P1, the parser. The parser starts the first of the hard work involved with
turning the description of a program written in the C language into the actual executable itself consisting
of assembler instructions. The parser scans the C source code to ensure that it is valid and then replaces
C expressions with a modified form of these. (The description of code generation that follows need not
be followed to understand how to use the HI-TECH compiler, but has been included for curious readers.)

For example the C expression a = b + 2 is re-arranged to a prefix notation like = a + b 2. This
notation can easily be interpreted as a tree with = at the apex, a and + being branches below this, and b
and 2 being sub-branches of the addition. The output of the parser is shown in Table 2 - 6 on page 23 for
our small C program. The assignment statement in the C source has been highlighted as well as the
output the parser generates for this statement. Notice that already the global symbols in the parser output
have had an underscore character pre-pended to their name. From now on, reference will be made to
them using these symbols. The other symbols in this highlighted line relate to the constant. The ANSI

Table 2 - 4 preprocessor output

C source Pre-processed output
#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

1 "main.c"

int a, b = 1;

void
main(void)
{

a = b + 2;
}

22

Overview of the compilation process

 2
standard states that the constant 2 in the source should be interpreted as a signed int. The parser
ensures this is the case by casting the constant value. The -> symbol represents the cast and the ‘i
represents the type. Line numbering, variable declarations and the start and end of a function definition
can be seen in this output.

It is the parser that is responsible for finding a large portion of the errors in the source code. These errors
will relate to the syntax of the source code. The parser also reports warnings if the code is unusual.

The parser passes its output directly to the next stage in the compilation process. There are no driver
options to force the parser to generate parsed-source output files as these files contain no useful
information for the programmer.

Table 2 - 5 Intermediate and Support files

extension name contents
.pre pre-processed file C source or assembler after the pre-processing stage
.lst C listing file C source with line numbers
.lst assembler listing C source with corresponding assembler instructions
.map map file symbol and psect relocation information generated by the linker
.err error file compiler warnings and errors resulting from compilation
.rlf relocation listing file information necessary to update list file with absolute addresses
.sdb symbolic debug file object names and types for module
.sym symbol file absolute address of program symbols

Table 2 - 6 Parser output

C source Parsed output
#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

Version 3.2 HI-TECH Softwa...
"3 main.c
[v _a `i 1 e]
[v _b `i 1 e]
[i _b
-> 1 `i
]
"7
[v _main `(v 1 e]
{
 [e :U _main]
 [f]
 "9
[; ;main.c: 9: b = a + 2;
 [e = _a + _b -> 2 `i]
 "10
[; ;main.c: 10: }
 [e :UE 1]
}

HI-TECH PICC Lite compiler 23

Tutorials

 2
Now the tricky part of the compilation: code generation. The code generator converts the parser output
into assembler mnemonics. This is the first step of the compilation process which is processor-specific.
Whereas all HI-TECH preprocessors and parsers have the same name and are in fact the same
application, the code generators will have a specific, processor-based name, for example CGPIC, or
CG51.

The code generator uses a set of rules, or productions, to produce the assembler output. To understand

how a production works, consider the following analogy of a production used to generate the code for
the addition expression in our test program. "If you can get one operand into a register" and "one operand
is a int constant" then here is the code that will perform a 2-byte addition of them. Here, each quoted
string would represent a sub-production which would have to be matched. The first string would try to
get the contents of _a into a register by matching further sub-productions. If it cannot, this production
cannot be used and another will be tried. If all the sub-productions can be met, then the code that they
produce can be put together in the order specified by the production tree. Not all productions actually
produce code, but are necessary for the matching process.

If no matching production/subproductions can be found, the code generator will produce a Can’t
generate code for this expression error. This means that the original C source code was legal
and that the code generator did try to produce assembler code for it, but that in this context, there are no
productions which can match the expression.

Typically there may be around 800 productions to implement a full code generator. There were about a
dozen matching productions used to generate code for the statement highlighted in Table 2 - 7 on page
24 using the XA code generator. It checked about 70 productions which were possible matches before
finding a solution. The exact code generation process is too complex to describe in this document and
is not required to be able to use the compiler efficiently.

The user can stop the compilation process after code generation by issuing a -s (compile to .as) option
to the driver. In this case, the code generator will leave behind assembler files with a .as extension.

Table 2 - 7 Code generator output

C source assembler (XA) code
#define VAL 2

int a, b = 1;

void
main(void)
{
 /* set starting value */
 a = b + VAL;
}

 psect text
_main:
;main.c: 9: a = b + 2;
 global _b
 mov r0,#_b
 movc.w r1,[ro+]
 adds.w r1,#02h
 mov.w _a,r1
24

Overview of the compilation process

 2
Table 2 - 7 on page 24 shows output generated by the XA code generator. Only the assembler code for
the opening brace of _main and the highlighted source line is shown. This output will be different for
other compilers and compiler options.

The code generator may also produce debugging information in the form of an .sdb file. This operation
is enabled by using the -g (source level debug info) option. One debug file is produced for each module
that is being compiled. These ASCII files contain information regarding the symbols defined in each
module and can be used by debugging programs. Table 2 - 5 on page 23 shows the debug files that can
be produced by the compiler at different stages of the compilation. Several of the output formats also
contain debugging information in addition to the code and data.

The code generator optionally performs one other task: optimization. HI-TECH compilers come with
several different optimizer stages. The code generator is responsible for global optimization which can
be enabled using a -Zg (global optimization) option. This optimization is performed on the parsed
source. Amongst other things, this optimization stage allocates variables to registers whenever possible
and looks for constants that are used consecutively in source code to avoid reloading these values
unnecessarily

Assembly files are the first files in the compilation process that make reference to psects, or program
sections. The code generator will generate the psect directives in which code and data will be positioned.

The output of the code generator is then passed to the assembler which converts the ASCII
representation of the processor instructions - the ASCII mnemonics - to binary machine code. The
assembler is specific for each compiler and has a processor-dependent name such as ASPIC or ASXA.
Assembler code also contains assembler directives which will be executed by the assembler. Some of
these directives are to define ROM-based constants, others define psects and others declare global
symbols.

The assembler is optionally preceded by an optimization of the generated assembler. This is the peephole
optimization. With some HI-TECH compilers the peephole optimizer is contained in the assembler
itself, e.g. the PIC assembler, however others have a separate optimization application which is run
before the assembler is executed, e.g. OPT51. Peephole optimization is carried out separately over the
assembler code derived from each single function.

In addition to the peephole optimizer, the assembler itself may include a separate assembler optimizer
step which attempts to replace long branches with short branches where possible. The -O option enables
both assembler optimizers, even if they are performed by separate applications, however HPD includes
menu items for both optimizer stages (Peephole optimization and Assembler optimization). If the
peephole optimizer is part of the assembler, the assembler optimization item in HPD has no effect.

The output of the assembler is an object file. An object file is a formatted binary file which contains
machine code, data and other information relating to the module from which it has been generated.
Object files come in two basic types: relocatable and absolute object files. Although both contain
HI-TECH PICC Lite compiler 25

Tutorials

 2
machine code in binary form, relocatable object files have not had their addresses resolved to be absolute
values. The binary machine code is stored as a block for each psect. Any addresses in this area are
temporarily stored as 00h. Separate relocation information in the object file indicates where these
unresolved addresses lie in the psect and what they represent. Object files also contain information
regarding any psects that are defined within so that the linker may position these correctly.

Object files produced by the assembler follow a format which is standard for all HI-TECH compilers,
but obviously their contents are machine specific. Table 2 - 8 on page 26 shows several sections of the
HI-TECH format relocatable object file that has been converted to ASCII for presentation using the
DUMP executable which comes with the compiler. The highlighted source line is represented by the
highlighted machine code in the object file. This code is positioned in a psect called text. The
underlined bytes in the object file are addresses that as yet are unknown and have been replaced with
zeros. The lines after the text psect in the object file show the information used to resolve the addresses
needed by the linker. The two bytes starting at offset 2 and the two single bytes at offset 9 and 10 are
represented here and as can be seen, their address will be contained at an address derived from the
position of the data and bss psects, respectively..

If a -ASMLIST (Generate assemble listing) option was specified, the assembler will generate an
assembler listing file which contains both the original C source lines and the assembler code that was
generated for each line. The assembler listing output is shown in Table 2 - 9 on page 27. Unresolved
addresses are listed as being zero with unresolved-address markers "’" and "*" used to indicate that the
values are not absolute. Note that code is placed starting from address zero in the new text psect. The
entire psect will be relocated by the linker..

Some HI-TECH assemblers also generate a relocatable listing file (extension: .rlf).3 This contains
address information which can be read by the linker and used to update the assembler listing file, if such

Table 2 - 8 Assembler output

C source Relocatable object file
#define VAL 2

int a, b;

void
main(void)
{
 /* set start...
 a = b + VAL;
}

11 TEXT 22
 text 0 13
 99 08 00 00 88 10 A9 12 8E 00 00 D6 80
12 RELOC 63
 2 RPSECT data 2
 9 COMPLEX 0
 Key: direct
 0x7>=(high bss)
 9 COMPLEX 1
 ((high bss)&0x7)+0x8
 10 COMPLEX 1
 low bss

3. The generation of this file is not shown in Figure 2 - 1 on page 19 in the interests of clarity.
26

Overview of the compilation process

 2
a file was created. After linking, the assembler listing file will have unresolved addresses and address
markers removed and replaced with their final absolute addresses

The above series of steps: pre-processing, parsing, code generation and assembly, are carried out for
each C source file passed to the driver in turn. Errors in the code are reported as they are detected. If a
file cannot be compiled due to an error, the driver halts compilation of that module after the application
that generated the error completes and continues with the next file which was passed to it, starting again
with the CLIST application.

For any assembler files passed to the driver, these do not require as much processing as C source files,
but they must be assembled. The compiler driver will pass any .as files straight to the assembler. If the
user specifies the -P (Pre-process assembler files) the assembler files are first run through the C
preprocessor allowing the using of all preprocessor directives within assembly code. The output of the
preprocessor is then passed to the assembler.

Object and library files passed to the compiler are already compiled and are not processed at all by the
first stages of the compiler. They are not used until the link stage which is explained below.

If you are using HPD, dependency information can be saved regarding each source and header file by
clicking the save dependency information switch. When enabled, the HPD driver determines only
which files in the project need be re-compiled from the modification dates of the input source files. If
the source file has not been changed, the existing object file is used.

2.1.2.2 The link stage

The format of relocatable object files are again processor-independent so the linker and other
applications discussed below are common across the whole range of HI-TECH compilers. The linker's
name is HLINK.4

Table 2 - 9 Assembler listing

C source Assembler listing
#define VAL 2

int a, b;

void
main(void)
{
 /* set start...
 a = b + VAL;
}

10 0000' psect text
11 0000' _main:
12 ;main.c: 9: a = b + 2;
13 0000' 99 08 0000' mov.w r0,#_b
14 0004' 88 10 movc.w r1,[r0+]
15 0006' A9 12 adds.w r1,#2
16 0008' 8E 00* 00* mov.w _a,r1
17 ;main.c: 10: }
18 000B' D6 80 ret

4. Early HI-TECH linkers were called link.
HI-TECH PICC Lite compiler 27

Tutorials

 2
The tasks of the linker are many. The linker is responsible for combining all the object and library files
into a single file. The files operated on by the linker include all the object files compiled from the input
C source files and assembler files, plus any object files or library files passed to the compiler driver, plus
any run-time object files and library files that the driver supplies. The linker also performs grouping and
relocation of the psects contained in all of the files passed to it, using a relatively complex set of linker
options. The linker also resolves symbol names to be absolute addresses after relocation has made it
possible to determine where objects are to be stored in ROM or RAM. The linker then adjusts references
to these symbols - a process known as address fixup. If the symbol address turns out to be too large to
fit into the space in the instruction generated by the code generator, a fixup overflow error occurs.
For example, if the address of the symbol _b in our running example was determined to be 20000h, the
linker would not be able to fit this address into the first underlined two byte "hole" in the object file
shown dumped in the Table Assembler output on page 26 since 20000h is larger than two bytes long.

The linker can also generate a map file which has detailed information regarding the position of the
psects and the addresses assigned to symbols. The linker may also produce a symbol file. These files
have a .sym extension and are generated when the -G (Source level debug info) option is used. This
symbol file is ASCII-based and contains information for the entire program. Addresses are absolute as
this file is generated after the link stage.

Although the object file produced by HLINK contains all the information necessary to run the program,
the program has to be somehow transferred from the host computer to the embedded hardware. There
are a number of standard formats that have been created for such a task. Emulators and chip
programmers often can accept a number of these formats. The Motorola HEX (S record) or Intel HEX
formats are common formats. These are ASCII formats allowing easy viewing by any text editor. They
include checksum information which can be used by the program which downloads the file to ensure that
it was transmitted without error. These formats include address information which allows those areas
which do not contain data to be omitted from the file. This can make these files significantly smaller
than, for example, a binary file.

The OBJTOHEX application is responsible for producing the output file requested by the user. It takes the
absolute object file produced by the linker and produces an output under the direction of the compiler
driver. The OBJTOHEX application can produce a variety of different formats to satisfy most
development systems. The output types available with most HI-TECH compilers are shown in Table 2
- 10.

In some circumstances, more than one output file is required. In this case an application called
CROMWELL, the reformatter, is executed to produce further output files. For example it is commonly used
with the PIC compiler to read in the HEX file and the SYM file and produce a COD file.
28

Psects and the linker

 2
2.2 Psects and the linker

This tutorial explains how the compiler breaks up the code and data objects in a C program into different
parts and then how the linker is instructed to position these into the ROM and RAM on the target.

2.2.1 Psects

As the code generator progresses it generates an assembler file for each C source file that is compiled.
The contents of these assembly files include different sections: some containing assembler instructions
that represent the C source; others contain assembler directives that reserve space for variables in RAM;
others containing ROM-based constants that have been defined in the C source; and others which hold
data for special objects such as non-volatile variables, interrupt vectors and configuration words used by
the processor. Since there can be more than one input source file there will be similar sections of
assembler spread over multiple assembler files which need to be grouped together after all the code
generation is complete.

These different sections of assembler need to be grouped in special ways: It makes sense to have all the
initialised data values together in contiguous blocks so they can be copied to RAM in one block move
rather than having them scattered in-between sections of code; the same applies to uninitialised global
objects which have to be allocated a space which is then cleared before the program starts; some code

Table 2 - 10 Output formats

extension name content
.hex Motorola hex code in ASCII, Motorola S19 record format
.hex Intel hex code in ASCII, Intel format
.hex Tektronix hex code in ASCII Tek format
.hex American

Automation hex
code and symbol information in binary, American Automa-
tion format

.bin binary file code in binary format

.cod Bytecraft COD
file

code and symbol information in binary Bytecraft format

.cof COFF file code and symbol information in binary common object file
format

.ubr UBROF file code and symbol information in universal binary relocatable
object format

.omf OMF-51 file code and symbol information in Intel Object Module For-
mat for 8051

.omf enhanced
OMF-51 file

code and symbol information in Keil Object Module Format
for 8051
HI-TECH PICC Lite compiler 29

Tutorials

 2
or objects have to be positioned in certain areas of memory to conform to requirements in the processor’s
addressing capability; and at times the user needs to be able to position code or data at specific absolute
addresses to meet special software requirements. The code generator must therefore include information
which indicates how the different assembler sections should be handled and positioned by the linker later
in the compilation process.

The method used by the HI-TECH compiler to group and position different parts of a program is to place
all assembler instructions and directives into individual, relocatable sections. These sections of a
program are known as psects - short for program sections. The linker is then passed a series of options
which indicate the memory that is available on the target system and how all the psects in the program
should be positioned in this memory space.

2.2.1.1 The psect directive

The psect assembler directives (generated by the code generator or manually included in other assembly
files) define a new psect. The general form of this directive is shown below.

psect name,option,option...

It consists of the token psect followed by the name by which this psect shall be referred. The name
can be any valid assembler identifier and does not have to be unique. That is, you may have several
psects with the same name, even in the same file. As will be discussed presently, psects with the same
name are usually grouped together by the linker.

The directive options are described in the assembler section of the manual, but several of these will be
discussed in this tutorial. The options are instructions to the linker which describe how the psect should
be grouped and relocated in the final absolute object file.

Psects which all have the same name imply that their content is similar and that they should be grouped
and linked together in the same way. This allows you to place objects together in memory even if they
are defined in different files.

After a psect has been defined, the options may be omitted in subsequent psect directives in the same
module that use the same name. The following example shows two psects being defined and filled with
code and data.

psect text,global
begin:
 mov r0,#10
 mov r2,r4
 add r2,#8
psect data
input:
 ds 8
30

Psects and the linker

 2
psect text
next:
 mov r4,r2
 rrc r4

In this example, the psect text is defined including an option to say that this is a global psect. Three
assembler instructions are placed into this psect. Another psect is created: data. This psect reserves 8
bytes of storage space for data in RAM. The last psect directive will continue adding to the first psect.
The options were omitted from the psect directive in this example as there has already been a psect
directive in this file that defines the options for a psect of this name. The above example will generate
two psects. Other assembler files in the program may also create psects which have the same name as
those here. These will be grouped with the above by the linker in accordance with the psect directive
flags.

2.2.1.2 Psect types

Psects come in three broad types: those that will reside permanently in ROM5; those that will be
allocated space in RAM after the program starts; and those that will reside in ROM, but which will be
copied into another reserved space in RAM after the program starts. A combination of code - known as
the run-time (or startup) code - and psect and linker options allow all this to happen.

Typically, psects placed into ROM contain instructions and constant data that cannot be modified. Those
psects allocated space in RAM only are for global data objects that do not have to assume any non-zero
value when the program starts, i.e. they are uninitialised. Those psects that have both a ROM image and
space reserved in RAM are for modifiable, global data objects which are initialised, that is they contain
some specific value when the program begins, but that value can be changed by the program during its
execution.

The following C source shows two objects being defined. The object input will be placed into a data
psect; the value 22 will reside in ROM and be copied to the RAM space allocated for input by the run-
time code. The object output will not contribute directly to the ROM image. A an area of memory will
be reserved for it in RAM and this area will be cleared by the run-time code (output will be assigned
the value 0).

int input = 22; // an initialised object
int output; // an uninitialised object

Snippets from the assembler listing file show how the 8051XA compiler handles these two objects.
Other compilers may produce differently structured code. The psect directive flags are discussed

5. The term "ROM" will be used to refer to any non-volatile memory.
HI-TECH PICC Lite compiler 31

Tutorials

 2
presently, but note that for the initialised object, input, the code generator used a dw (define word)
directive which placed the two bytes of the int value (16 and 00) into the output which is destined for
the ROM. Two bytes of storage were reserved using the ds assembler directive for the uninitialised
object, output, and no values appear in the output.

 1 0000' psect data,class=CODE,space=0,align=0
 2 global _input
 3 align.w
 4 0000' _input:
 5 0000' 16 00 dw 22

 13 0000' psect bss,class=DATA,space=1,align=0
 14 global _output
 15 align.w
 16 0000' _output:
 17 0000' ds 2

Auto variables and function parameters are local to the function in which they are defined and so are
handled different by the compiler. The may be allocated space dynamically (for example on the stack)
in which case they are not stored in psects by the compiler.

Two addresses are used to refer to the location of a psect: the link address and the load address. The link
address is the address at which the psect (and any objects or labels within the psect) can be accessed
whilst the program is executing. The load address is the address at which the psect will reside in the
output file that creates the ROM image, or, alternatively, the address of where the psect can be accessed
in ROM.

For the psect types that reside in ROM their link and load address are be the same as they reside in ROM
and are never copied to a new location. Psects that are allocated space in RAM only will have a link
address, but a load address is not applicable. The compiler often makes the load address of these psects
the same as the link address. Since no ROM image of these psects is formed, the load address is
meaningless and can be ignored. Any access to objects defined in these psects is performed using the
link address. The psects that reside in ROM, but are copied to RAM have link and load addresses that
are usually different. Any references to symbols or labels in these psects are always made using the link
addresses.

2.3 Linking the psects

After the code generator and assembler6 have finished their jobs, the object files passed to the linker can
be considered to be a mixture of psects that have to be grouped and positioned in the available ROM and
32

Linking the psects

 2
RAM. The linker options indicate the memory that is available and the flags associated with a psect
directive indicate how the psects are to be handled.

2.3.1 Grouping psects

There are two psect flags that affect the grouping, or merging, of the psects. These are the LOCAL and
GLOBAL flags. GLOBAL is the default and tells the linker that the psects should be grouped together with
other psects of the same name to form a single psect. LOCAL psects are not grouped in this way unless
they are contained in the same module. Two local psects which have the same name, but which are
defined in different modules are treated and positioned as separate psects.

2.3.2 Positioning psects

Several psect flags affect how the psects are positioned in memory. Psects which have the same name
can be positioned in one of two ways: they can be overlaid one another, or they can be placed so that
each takes up a separate area of memory.

Psects which are to be overlaid will use the OVLRD psect directive flag. At first it may seem unusual to
have overlaid psects as they might destroy other psects’ contents as they are positioned, however there
are instances where this is desirable.

One case where overlaid psect are used is when the compiler has to use temporary variables. When the
compiler has to pass several data objects to, say, a floating-point routine, the floats may need to be stored
in temporary variables which are stored in RAM. It is undesirable to have the space reserved if it is not
going to be used, so the routines that use the temporary objects are also responsible for defining the area
and reserving the space in which these will reside. However several routines may called and hence
several temporary areas created. To get around this problem, the psects which contain the directives to
reserve space for the objects are defined as being overlaid so that if more than one is defined, they since
simply overlap each other.

Another situation where overlaid psects are used is when defining the interrupt vectors. The run-time
code usually defines the reset vector, but other vectors are left up to the programmer to initialize.
Interrupt vectors are placed into a separate psect (often called vectors). Each vector is placed at an
offset from the beginning of the vectors area appropriate for the target processor. The offset is achieved
via an ORG assembler directive which moves the location counter relative to the beginning of the current
psect. The macros contained in the header file <intrpt.h>, which allow the programmer to define
additional interrupt vectors, also place the vectors they define into a psect with this same name, but with
different offsets, depended on the interrupt vector being defined. All these psects are grouped and
overlaid such that the vectors are correctly positioned from the same address - the start of the vectors
psect. This merged psect is then positioned by the linker so that it begins at the start of the vectors area.

6. The assembler does not modify psect directives in any way other than encoding the details of each into the object
file.
HI-TECH PICC Lite compiler 33

Tutorials

 2
Most other compiler-generated psects are not overlaid and so they will each occupy their own unique
address space. Typically these psects are placed one after the other in memory, however there are several
psect flags that can alter the positioning of the psects. Some of these psect flags are discussed below.

The RELOC flag is used when psects must be aligned on a boundary in memory. This boundary is a
multiple of the value specified with the flag. The ABS flag specifies that the psect is absolute and that it
should start at address 0h. Remember, however, that if there are several psects which use this flag, then
after grouping only one can actually start at address 0h unless the psects are also defined to be overlaid.
Thus ABS means that one of the psects with this name will be located at address 0h, the others following
in memory subject to any other psect flags used.

2.3.3 Linker options to position psects

The linker is told of the memory setup for a target program by the linker options that are generated by
the compiler driver. The user informs the compiler driver about memory using either the -A option7 with
the command line driver (CLD), or via the ROM & RAM addresses dialogue box under HPD.
Additional linker options indicate how the psects are to be positioned into the available memory.

The linker options are a little confusing at first, but the following example shows how the options could
be built up as a program develops, and then discusses some of the specific schemes used by HI-TECH
compilers. When compiling using either the CLD or HPD, a full set of default linker options are used,
based on either the -A option values, or the ROM & RAM addresses dialogue values. In most cases
the linker options do not need to be modified.

2.3.3.1 Placing psects at an address

Let us assume that the processor in a target system can address 64 kB of memory and that ROM, RAM
and peripherals all share this same block of memory. The ROM is placed in the top 16 kB of memory
(C000h - FFFFh); RAM is placed at addresses from 0h to FFFh.

Let us also assume that three object files passed to the linker: one a run-time object file; the others
compiled from the programmer's C source code. Each object file contains a compiler-generated text
psect (a psect called text): the psect in one file is 100h bytes long; that from other file is 200h bytes
long; that from the run-time object file is 50h long. These psects are to be placed in ROM and all have
the simple definition generated by the code generator:

psect text,class=CODE

7. The -A option on the PIC compiler serves a different purpose. Most PIC devices only have internal memory and so
a memory option is not required by the compiler. High-end PICs may have external memory, this is indicated to the
compiler by using a -ROM option to the CLD or by the RAM & ROM addresses... dialogue box under HPDPIC.
The -A option is used to shift the entire ROM image, when using highend devices.
34

Linking the psects

 2
The CLASS flag is typically used with these types of psects and is considered later in this tutorial. By
default, these psects are GLOBAL, hence after scanning all the object files passed to it, the linker will
group all the text psects together so that they are contiguous8 and form one larger text psect. The
following -p linker option could be used to position the text psect at the bottom of ROM.

-ptext=0C000h

There is only one address specified with this linker option since the psects containing code are not
copied from ROM to RAM at any stage and the link and load addresses are the same.

The linker will relocate the grouped text psect so that it starts at address C000h. The linker will then
define two global symbols with names: __Ltext and __Htext and equate these with the values:
C000h and C350h which are the start and end addresses, respectively, of the text psect group.

Now let us assume that the run-time file and one of the programmer's files contains interrupt vectors.
These vectors must be positioned at the correct location for this processor. Our fictitious processor
expects its vectors to be present between locations FFC0h and FFFFh. The reset vector takes up two
bytes at address FFFEh an FFFFh, and the remaining locations are for peripheral interrupt vectors. The
run-time code usually defines the reset vector using code like the following.

global start
psect vectors,ovlrd
org 3Eh
dw start

This assembler code creates a new psect which is called vectors. This psect uses the overlaid flag
(OVLRD) which tells the linker that any other psects with this name should be overlaid with this one, not
concatenated with it. Since the psect defaults to being global, even vectors psects in other files will
be grouped with this one. The org directive tells the assembler to advance 3Eh locations into this psect.
It does not tell the assembler to place the object at address 3Eh. The final destination of the vector is
determined by the relocation of the psect performed by the linker later in the compilation process. The
assembler directive dw is used to actually place a word at this location. The word is the address of the
(global) symbol start. (start or powerup are the labels commonly associated with the beginning
of the run-time code.)

In one of the user's source files, the macro ROM_VECTOR has been used to supply one of the peripheral
interrupts at offset 10h into the vector area. The macro expands to the following in-line assembler code.

8. Some processors may require word alignment gaps between code or data. These gaps can be handled by the com-
piler, but are not considered here.
HI-TECH PICC Lite compiler 35

Tutorials

 2
global _timer_isr
psect vectors,ovlrd
org 10h
dw _timer_isr

After the first stages of the compilation have been completed, the linker will group together all the
vectors psects it finds in all the object files, but they will all start from the same address, i.e. they are
all placed one over the other. The final vectors psect group will contain a word at offset 10h and
another at offset 3Eh. The space from 0h to offset 0Fh and in-between the two vectors is left untouched
by the linker. The linker options required to position this psect would be:

-pvectors=0FFC0h

The address given with this option is the base address of the vectors area. The org directives used to
move within the vectors psects hence were with respect to this base address.

Both the user's files contain constants that are to be positioned into ROM. The code generator generates
the following psect directive which defines the psect in which it store the values.

psect const

The linker will group all these const psects together and they can be simply placed like the text
psects. The only problem is: where? At the moment the text psects end at address C34Fh so we could
position the const psects immediately after this at address C350h, but if we modify the program, we will
have to continually adjust the linker options. Fortunately we can issue a linker option like the following.

-ptext=0C000h,const

We have not specified an address for the psect const, so it defaults to being the address immediately
after the end of the preceding psect listed in the option, i.e. the address immediately after the end of the
text psect. Again, the const psect resides in ROM only, so this one address specifies both the link
and load addresses.

Now the RAM psects. The user's object files contain uninitialised data objects. The code generator
generates bss psects in which are used to hold the values stored by the uninitialised C objects. The area
of memory assigned to the bss psect will have to be cleared before main() is executed.

At link time, all bss psects are grouped and concatenated. The psect group is to be positioned at the
beginning of RAM. This is easily done via the following option.

-pbss=0h

The address 0h is the psect's link address. The load address is meaningless, but will default to the link
address. The run-time code will clear the area of memory taken up by the bss psect. This code will use
36

Linking the psects

 2
the symbols __Lbss and __Hbss to determine the starting address and the length of the area that has
to be cleared.

Both the user's source files contain initialised objects like the following.

int init = 34;

The value 34 has to be loaded into the object init before the main() starts execution. Another of the
tasks of the run-time code is to initialise these sorts of objects. This implies that the initial values must
be stored in ROM for use by the run-time code. But the object is a variable that can be written to, so it
must be present in RAM once the program is running. The run-time code must then copy the initialised
values from ROM into RAM just before main() begins. The linker will place all the initial values into
ROM in exactly the same order as they will appear in RAM so that the run-time code can simply copy
the values from ROM to RAM as a single block. The linker has to be told where in ROM these values
should reside as it generates the ROM image, but is must also know where in RAM these objects will
be copied to so that it can leave enough room for them and resolve the run-time addresses for symbols
in this area.

The complete linker options for our program, including the positioning of the data psects, might look
like:

-ptext=0C000h,const
-pvectors=0FFC0h
-pbss=0h,data/const

That is, the data psect should be positioned after the end of the bss psect in RAM. The address after
the slash indicates that this psect will be copied from ROM and that its position in ROM should be
immediately after the end of the const psect. As with other psects, the linker will define symbols
__Ldata and __Hdata for this psect, which are the start and end link addresses, respectively, that will
be used by the run-time code to copy the data psect group. However with any psects that have different
link and load addresses, another symbol is also defined, in this case: __Bdata. This is the load address
in ROM of the data psect.

2.3.3.2 Exceptional cases

The PIC compiler handles the data psects in a slightly different manner. It actually defines two separate
psects: one for the ROM image of the data psects; the other for the copy in RAM. This is because the
length of the ROM image is different to the length of the psect in RAM. (The ROM is wider than the
RAM and values stored in ROM may be encoded as retlw instructions.) The linker options in this case
will contain two separate entries for both psects instead of the one psect with different link and load
addresses specified. The names of the data psects in RAM are similar to rdata_0; those in ROM are
like idata_0. The digit refers to a RAM bank number.
HI-TECH PICC Lite compiler 37

Tutorials

 2
The link and load addresses reported for psects that contain objects of type bit have slightly different
meaning to ordinary link and load addresses. In the map file, the link address listed is the link address
of the psect specified as a bit address. The load address is the link address specified as a byte address.
Bit objects cannot be initialised, so separate link and load addresses are not required. The linker knows
to handle these psects differently because of the BIT psect flag. Bit psects will be reported in the map
file as having a scale value of 8. This relates to the number of objects that can be positioned in an
addressable unit.

2.3.3.3 Psect classes

Now let us assume that more ROM is added to our system since the programmers have been busy and
filled the 16 kB currently available. Several peripheral devices were placed in the area from B000h to
BFFFh so the additional ROM is added below this from 7000h to AFFFh. Now there are two separate
areas of ROM and we can no longer give a single address for the text psects.

What we can now do to take advantage of this extra memory is define several ranges of addresses that
can be used by ROM-based psects. This can be done by creating a psect class. There are several ways
that psects can be linked when using classes. Classes are commonly used by HI-TECH C compilers to
position the code or text psects. Different strategies are employed by different compilers to better suit
the processor architecture for which the compilation is taking place. Some of these schemes are
discussed below. If you intend to modify the default linker options or generate your own psects, check
the linker options and psect directives generated by the code generator for the specific compiler you are
using.

A class can be defined using another linker option. For example to use the additional memory added to
our system we could define a class using the linker option:

-ACODE=7000h-AFFFh,C000h-FFFFh

The option is a -A immediately followed by the class name and then a comma-separated list of address
ranges. Remember this is an option to the linker, not the CLD. The above example defines two address
ranges for a class called CODE.

Here is how drivers for the 8051, 8051XA and Z80 compilers define the options passed to the linker to
handle the code psects. In large model the 8051 psect definitions for psects that contain code are as
follows.

psect text,class=CODE

The CLASS psect flag specifies that the psect text is a member of the class called CODE.

If a single ROM space has been specified by either not using the -ROM option with the CLD or by
selecting single ROM in the ROM & RAM addresses dialogue box under HPD, no class is defined
and the psects are linked using a -p option as we have been doing above. Having the psects within a
38

Linking the psects

 2
class, but not having that class defined is acceptable, provided that there is a -p option to explicitly
position the psects after they have been grouped. If there is no class defined and no -p option a default
memory address is used which will almost certainly be inappropriate.

If multiple ROM spaces have been specified by using either the -ROMranges option with the CLD, or
specifying the address ranges in the ROM & RAM addresses (after selecting the multiple ROMs
button) dialogue box under HPD, a class is defined by the driver using the -A linker option similar to
that shown above and the -p option is omitted from the options passed to the linker.

The PIC compiler does things a little differently as it has to contend with multiple ROM pages that are
quite small. The PIC code generator defines the psects which hold code like the following.

psect text0,local,class=CODE,delta=2

The DELTA value relates to the ROM width and need not be considered here. The psects are placed in
the CODE class, but note that the they are made local using the LOCAL psect flag. The psects that are
generated from C functions each have unique names which proceed: text0, text1, text2 etc. Local
psects are not grouped across modules, i.e. if there are two modules, each containing a local psect of the
same name, they are treated are separate psects. Local psects cannot be positioned using a -p linker
option as there can be more than one psect with that name. Local psects must be made members of a
class, and the class defined using a -A linker option. The PIC works in this way to assist with the
placement of the code in its ROM pages. This is discussed further in Section 2.3.4 on page 41.

A few general rules apply when using classes: If, for example, you wanted to place a psect that is not
already in a class into the memory that a class occupies, you can replace an address or psect name in a
linker -p option with a class name. For instance, in the generic example discussed above, the const
psect was placed after the text psect in memory. If you would now like this psect to be positioned in
the memory assigned to the CODE class the following linker options could be used.

-pconst=CODE
-pvectors=0FFC0h
-pbss=0h,data/CODE
-ACODE=7000h-AFFFh,C000h-FFFFh

Note also that the data psect’s load location has been swapped from after the end of the const psect
to within the memory assigned to the CODE class to illustrate that the load address can be specified using
the class name.

Another class definition that is sometimes seen in PIC linker options specifies three addresses for each
memory range. Such an option might look something like:

-AENTRY=0h-FFh-1FFh
HI-TECH PICC Lite compiler 39

Tutorials

 2
The first range specifies the address range in which the psect must start. The psects are allowed to
continue past the second address as long as they do not extend past the last address. For the example
above, all psects that are in the ENTRY class must start at addresses between 0 and FFh. The psects must
end before address 1FFh. No psect may be positioned so that its starting address lies between 100h and
1FFh. The linker may, for example, position two psects in this range: the first spanning addresses 0 to
4Fh and the second starting at 50h and finishing at 138h. Such linker options are useful on some PIC
processors (typically baseline PICs) for code psects that have to be accessible to instructions that modify
the program counter. These instructions can only access the first half of each ROM page.

2.3.3.4 User-defined psects

Let us assume now that the programmer wants to include a special initialised C object that has to be
placed at a specific address in memory, i.e. it cannot just be placed into, and linked with, the data psect.
In a separate source file the programmer places the following code.

#pragma psect data=lut
int lookuptable[] = {0, 2, 4, 7, 10, 13, 17, 21, 25};

The pragma basically says, from here onwards in this module, anything that would normally go into the
data psect should be positioned into a new psect called lut. Since the array is initialised, it would
normally be placed into data and so it will be re-directed to the new psect. The psect lut will inherit
any psect options (defined by the psect directive flags) which applied to data.

The array is to be positioned in RAM at address 500h. The -p option above could be modified to include
this psect as well.

-pbss=0h,data/const,lut=500h/

(The load address of the data psect has been returned to its previous setting.) The addresses for this
psect are given as "500h/". The address "500h" specifies the psect’s link address. The load address can
be anywhere, but it is desirable to concatenate it to existing psects in ROM. If the link address is not
followed by a load address at all, then the link and load addresses would be set to be the same, in this
case 500h. The "/", which is not followed by an address, tells the linker that the load address should be
immediately after the end of the previous psect’s load address in the linker options. In this case that is
the data psect’s load address, which in turn was placed after the const psect. So, in ROM will be
placed the const, data and lut psect, in that order.

Since this is an initialised data psect, it is positioned in ROM and must be copied to the memory reserved
for it in RAM. Although different link and load addresses have been specified with the linker option, the
programmer will have to supply the code that actually performs the copy from ROM to RAM. (The data
psects normally created by the code generator have code already supplied in the run-time file to copy
the psects.) The following is C code which could perform the copy.
40

Linking the psects

 2
extern unsigned char *_Llut, *_Hlut, *_Blut;
unsigned char *i;

void copy_my_psect(void)
{

for(i=_Llut; i<_Hlut; i++, _Blut++)
*i = *_Blut;

}

Note that to access the symbols __Llut etc. from within C code, the first underscore character is
dropped. These symbols hold the addresses of psects, so they are declared (not defined) as pointer
objects in the C code using the extern qualifier. Remember that the object lookuptable will not
be initialised until this C function has been called and executed. Reading from the array before it is
initialized will return incorrect values.

If you wish to have initialised objects copied to RAM before main() is executed, you can write
assembler code, or copy and modify the appropriate routine in the run-time code that is supplied with
the compiler. You can create you own run-time object file by pre-compiling the modified run-time file
and using this object file instead of the standard file that is automatically linked with user’s programs.
From assembler, both the underscore characters are required when accessing the psect address symbols.

If you define your own psect based on a bss psect, then, in the same way, you will have to supply code
to clear this area of memory if you are to assume that the objects defined within the psect will be cleared
when they are first used.

2.3.4 Issues when linking

The linker uses a relatively complicated algorithm to relocate the psects contained in the object and
library files passed to it, but the linker needs more information than that discussed above to know exactly
how to relocate each psect? This information is contained in other the linker options passed to the linker
by the driver and in the psect flags which are used with each psect directive. The following explain some
of the issues the linker must take into account.

2.3.4.1 Paged memory

Let’s assume that a processor has two ROM areas in which to place code and constant data. The linker
will never split a psect over any memory boundary. A memory boundary is assumed to exist wherever
there is a discontinuity in the address passed to the linker in the linker options. For example, if a class is
specified using the addresses as follows:

-ADATA=0h-FFh,100h-1FFh
HI-TECH PICC Lite compiler 41

Tutorials

 2
It is assumed that some boundary exists between address FFh and 100h, even though these addresses are
contiguous. This is why you will see contiguous address ranges specified like this, instead of having one
range covering the entire memory space. To make it easy to specify similar contiguous address ranges,
a repeat count can be used, like:

-ADATA=0h-FFhx2

can be used; in this example, two ranges are specified: 0 to FFh and then 100h to 1FFh. Some processors
have memory pages or banks. Again, a psect will not straddle a bank or page boundary.

Given that psects cannot be split over boundaries, having large psects can be a problem to relocate. If
there are two, 1 kB areas of memory and the linker has to position a single 1.8 kB psect in this space, it
will not be able to perform this relocation, even though the size of the psect is smaller than the total
amount of memory available. The larger the psects, the more difficult it is for the linker to position them.
If the above psect was split into three 0.6 kB psects, the linker could position two of them - one in each
memory area - but the third would still not fit in the remaining space in either area. When writing code
for processors like the PIC, which place the code generated from each C function into a separate, local
psect, functions should not become too long.

If the linker cannot position a psect, it generates a "Can’t find space for psect xxxx" error, where xxxx
is the name of the psect. Remember that the linker relocates psects so it will not report memory errors
with specific C functions or data objects. Search the assembler listing file to identify which C function
is associated with the psect that is reported in the error message if local psects are generated by the code
generator.

Global psects that are not overlaid are concatenated to form a single psect by the linker before relocation
takes place. There are instances where this grouped psect appears to be split again to place it in memory.
Such instances occur when the psect class within which it is a member covers several address ranges and
the grouped psect is too large to fit any of the ranges. The linker may use intermediate groupings of the
psects, called clutches to facilitate relocation within class address ranges. Clutches are in no way
controllable by the programmer and a complete understanding of there nature is not required to able to
understand or use the linker options. It is suffice to say that global psects can still use the address ranges
within a class. Note that although a grouped psect can be comprised of several clutches, an individual
psect defined in a module can never be split under any circumstances.

2.3.4.2 Separate memory areas

Another issue faced by the linker is this: On some processors, there are distinct memory areas for
program and data, i.e. Harvard architecture chips like the 8051XA. For example, ROM may extend from
0h - FFFFh and separate RAM may extend from 0h - 7FFh. If the linker is asked to position a psect at
address 100h via a -p option, how does the linker know whether this is an address in program memory
or in the data space? The linker makes use of the SPACE psect flag to determine this. Different areas are
42

Linking the psects

 2
assigned a different space value. For example ROM may be assigned a SPACE value of 0 and RAM a
SPACE flag of 1. The space flags for each psect are shown in the map file.

The space flag is not used when the linker can distinguish the destination area of an object from its
address. Some processors use memory banks which, from the processors’s point of view, cover the same
range of addresses, but which are within the same distinct memory area. In these cases, the compiler will
assign unique addresses to objects in banked areas. For example, some PIC processors can access four
banks of RAM, each bank covering addresses 0 to 7Fh. The compiler will assign objects in the first bank
(bank 0) addresses 0 to 7Fh; objects in the second bank: 80h to FFh; objects in the third bank: 100h to
17Fh etc. This extra bank information is removed from the address before it is used in an assembler
instruction. All PIC RAM banks use a SPACE flag of 1, but the ROM area on the PIC is entirely separate
and uses a different SPACE flag (0). The space flag is not relevant to psects which reside in both memory
areas, such as the data psects which are copied from ROM to RAM.

After relocation is complete, the linker will group psects together to form a segment. Segments, along
with clutches, are rarely mentioned with the HI-TECH compiler simply because they are an abstract
object used only by the linker during its operation. Segment details will appear in the map file. A
segment is a collection of psects that are contiguous and which are destined for a specific area in
memory. The name of a segment is derived from the name of the first psect that appears in the segment
and should not be confused with the psect which has that name.

2.3.4.3 Objects at absolute addresses

After the psects have been relocated, the addresses of data objects can be resolved and inserted into the
assembler instructions which make reference to an object’s address. There is one situation where the
linker does not determine and resolve the address of a C object. This is when the object has been defined
as absolute in the C code. The following example shows the object DDRA being positioned at address
200h.

unsigned char DDRA @ 0x200;

When the code generator makes reference to the object DDRA, instead of using a symbol in the generated
assembler code which will later be replaced with the object’s address after psect relocation, it will
immediately use the value 200h. The important thing to realise is that the instructions in the assembler
that access this object will not have any symbols that need to be resolved, and so the linker will simply
skip over them as they are already complete. If the linker has also been told, via its linker options, that
there is memory available at address 200h for RAM objects, it may very well position a psect such that
an object that resides in this psect also uses address 200h. As there is no symbol associated with the
absolute object, the linker will not see that two objects are sharing the same memory. If objects are
overlapping, the program will most likely fail unpredictably.

When positioning objects at absolute address, it vital to ensure that the linker will not position objects
over those defined as absolute. Absolute objects are intended for C objects that are mapped over the top
HI-TECH PICC Lite compiler 43

Tutorials

 2
of hardware registers to allow the registers to be easily access from the C source. The programmer must
ensure that the linker options do not specify that there is any general-purpose RAM in the memory space
taken up by the hardware. Ordinary variables to be positioned at absolute addresses should be done so
using a separate psect (by simply defining your own using a psect directive in assembler code, or by
using the #pragma psect directive in C code) and linker option to position the objects. If you must
use an absolute address for an object in general-purpose RAM, make sure that the linker options are
modified so that the linker will not position other psects in this area.

2.3.5 Modifying the linker options

In most applications, the default linker options do not need to be modified. It is recommended that if you
think the options should be modified, but you do not understand how the linker options work, that you
seek technical assistance in regard to the problem at hand.

If you do need to modify the linker options, there are several ways to do this. If you are simply adding
another option to those present by default, the option can be specified to the CLD using a -L option. To
position the lut psect that was used in the earlier example, the following option could be used.

-L-plut=500/const

The -L simply passes whatever follows to the linker. If you want to add another option to the default
linker options and you are using HPD and a project, then it is a simple case of opening the linker
options... dialogue box and adding the option to the end of those already there. The options should be
entered exactly as they should be presented to the linker, i.e. you do not need the -L at the front.

If you want to modify existing linker options other than simply changing the memory address that are
specified with the -A CLD option, then you cannot use the CLD to do this directly. What you will need
to do is to perform the compilation and link separately. Let’s say that the file main.c and extra.c
are to be compiled for the 8051 with modified linker options. First we can compile up to, but not include,
the link stage by using a command line something like this.

c51 -o -Zg -asmlist -C main.c extra.c

The -C options stops the compilation before the link stage. Include any other options which are normally
required. This will create two object files: main.obj and extra.obj, which then have to be linked
together.

Run the CLD again in verbose mode by giving a -v option on the command line, passing it the names
of the object files created above, and redirect the output to a file. For example:

c51 -v -A8000,0,100,0,0 main.obj extra.obj > main.lnk

Note that if you do not give the -A CLD option, the compiler will prompt you for the memory addresses,
but with the output redirected, you will not see the prompts.
44

Addresses used with the PIC

 2
The file generated (main.lnk) will contain the command line that CLD generated to run the linker
with the memory values specified using the -A option. Edit this file and remove any messages printed
by the compiler. Remove the command line for any applications run after the link stage, for example
objtohex or cromwell, although you should take note of what these command lines are as you will
need to run these applications manually after the link stage. The linker command line is typically very
long and if a DOS batch file is used to perform the link stage, it is limited to lines 128 characters long.
Instead the linker can be passed a command file which contains the linker options only. Break up the
linker command line in the file you have created by inserting backslash characters "\" followed by a
return. Also remove the name and path of the linker executable from the beginning of the command line
so that only the options remain. The above command line generated a main.lnk file that was then
edited as suggested above to give the following.

-z -pvectors=08000h,text,code,data,const,strings \
-prbit=0/20h,rbss,rdata/strings,irdata,idata/rbss \
-pbss=0100h/idata -pnvram=bss,heap -ol.obj \
-m/tmp/06206eaa /usr/hitech/lib/rt51--ns.obj main.obj \
extra.obj /usr/hitech/lib/51--nsc.lib

Now, with care, modify the linker options in this file as required by your application.

Now perform the link stage by running the linker directly and redirecting its arguments from the
command file you have created.

hlink < main.lnk

This will create an output file called l.obj. If other applications were run after the link stage, you will
need to run them to generate the correct output file format, for example a HEX file.

Modifying the options to HPD is much simpler. Again, simply open the linker options... dialogue box
and make the required changes, using the buttons at the bottom of the box to help with the editing. Save
and re-make your project.

The map file will contain the command line actually passed to the linker and this can be checked to
confirm that the linker ran with the new options.

2.4 Addresses used with the PIC
The PIC processor has a complicated memory map with banked RAM and paged ROM, and each
memory having different word widths. One of the biggest sources of confusion regarding addresses
used by the compiler stems from the fact that internal PIC RAM is one byte wide, but the ROM is either
12, 14 or 16 bits wide on baseline, midrange or highend processors, respectively. This tutorial explains
the different addresses that are used by the HI-TECH compiler.
HI-TECH PICC Lite compiler 45

Tutorials

 2
2.4.1 Code addresses

Labels used in PIC code (stored in ROM), such as C function names, are assigned word addresses. If
you check the map file after a compilation, the addresses of C functions, assembler routines and labels
shown in the symbol table are word addresses. The textn psects (where n is a number) are the psects
which will contain the assembler generated from a C function. These psects use a DELTA psect flag of
2. This indicates that one addressable unit - in this case an instruction - will take up 2 bytes of memory.
Even if the PIC has 12-bit wide ROM, the delta value is still 2. The delta value must be an integral
number.

2.4.2 Data addresses

The addresses of data objects are a little more complicated. Consider an array of characters (bytes) that
is placed in RAM. A label - the name of the array - will be used to reference the first element of the array.
The array will be placed in one of the rdata or rbss psects depending on whether the array was
initialised. Both these psects have a delta value of 1 which indicates that the addressable unit - in this
case a character - is 1 byte long. The address of the array in RAM will be a byte address.

If the array was declared as const, then it will be stored in ROM. On baseline and midrange PICs, ROM
cannot be read like RAM, so the values are stored as retlw (return with a literal (constant) in the W
register) assembler instructions, each taking up one word of ROM. The instructions’ data values
represent each element of the array. Since the data is actually stored as code, the delta value of the psect
containing the data will be 2 even though the object that these instructions represent is only a byte. The
delta value must be 2 since it refers to the contents of the psect which is code, not byte-wide data values.

The highend PIC devices can read ROM memory directly and store the array elements as their byte
values in the ROM. Highend PICs also have 16-bit wide ROM so the compiler can, and does, store 2
bytes for every word location in the ROM. Although these values are stored in a 16-bit wide area of
memory, the delta value for the psect that contains the data is 1. This implies that the addressable unit in
this area is one byte. This is necessary since you must be able to address each half of the word to access
each of the array elements stored there.

The above has important implications for the addresses that result during linking of programs with
constant data. With baseline and mid-range PICs, the address of a constant array label will be a word
address; with highend PICs, it will be a byte address. If you want to search for the array in memory when
using an emulator, for example, you must remember to divide the address by 2 to convert it to a word
address if you are using a highend device. The map file for highend devices will also show byte
addresses for the constant data, but the code labels will be word addresses. Sometimes it appears as if
constant data has overwritten code since their addresses overlap, but again, you cannot compare byte
and word addresses. Always check the delta value of a psect if you are unsure whether you are working
with a byte or word address. The delta value is displayed with the psect’s definition which can usually
be seen in the assembler listing file for that module.
46

Addresses used with the PIC

 2
The delta value does not indicate the size of objects stored in the psect. For example, if the array had
been a const array of ints, the delta value will still be 1, even though the size of an int is 2 bytes. The
addressable unit of an int is 1, since it is possible (via pointers for example) to only access one half of
the int value. On the PIC there are only two delta values: 2 for code, 1 for data.

As an example, consider the following do-nothing program.

const char array[] = {0x30, 0x31, 0x32};

void
main(void)
{
}

This is compiled for the 17C756 highend PIC processor. The assembler listing file includes the
following information.

 4 psect cstrings,global,class=CODE,delta=1
 5 psect text0,local,class=CODE,delta=2
 6 psect text1,local,class=CODE,delta=2
...
 26 psect cstrings
 27 3FFC _array
 28 3FFC 0030 db 30
 29 3FFD 0031 db 31
 30 3FFE 0032 db 32
 31
 32 psect text0
 33 1FFA _main
 34 ;const.c: 6: }
 35 1FFA B020 0103 B000 ljmp start
 + 0102
Symbol Table Thu Jun 17 12:10:06 1999

 _array 3FFC _main 1FFA start 2000

The array was placed in the cstrings psect which has a delta value of 1, but which was positioned in
ROM since the object is const. The address of the array is listed as 3FFC. Since the delta value is 1,
this must be a byte address. The routine main (label _main) is listed as starting at address 1FFA. Since
HI-TECH PICC Lite compiler 47

Tutorials

 2
this routine is in the text0 psect which has a delta value of 2, this is a word address. To determine where
each psect is positioned relative to the other, convert the byte address to a word address (3FFC becomes
1FFE) and you will notice that the string is positioned immediately after the four-word main routine in
ROM, which begins at 1FFA.

The HEX file generated was loaded into a simulator (MPLAB in this case) and the program memory
examined. A section of this memory is shown below.

1FF9 FFFF call 0x1FFF
1FFA B020 main movlw 0x20
1FFB 0103 movwf 0x3
1FFC B000 movlw 0x0
1FFD 0102 movwf 0x2
1FFE 3130 cpfseq 0x30
1FFF 0032 ret
2000 2B04 exit setf 0x4

The three bytes representing the array’s contents have been set in bold type. The address of the function
main and the array are underlined in the address column. Notice that 2 characters have been stored at
word address 1FFE, and the unused byte at the following address has been filled with a 0 byte. The
mnemonic interpretation shown (the cpfseq and ret instructions) for the array is meaningless.

Note that the array label is not displayed in the code. Some simulators/emulators may indicate the label
at the byte address, i.e at an incorrect position. Unless the simulator/emulator knows about delta values
and can adjust the addresses, some labels may not shown at the correct position. Note also, that often
there can be several labels associated with an address. In the above example, the __Lcstrings label
generated by the linker will also coincide with the name of the array since there is only one array in the
cstrings psect. It can be difficult for the simulator/emulator to know which of these labels it should
display.

If you check for objects in the HEX file remember that the addresses used in the records will be byte
addresses. These will need to be divided by 2 if you are trying to find an object using a known word
address.

Another thing that users must be aware of is that addresses used in linker options use the same units as
the psects which they position. For example if you wished to position the cstrings psect at word
address 1000h, you will need to use a linker option like the following.

-pcstrings=2000h

since the address is specified as a byte address (delta is 1 for the cstrings psect). But to position a
psect which has a delta value of 2, you need to supply a word address.
48

Addresses used with the PIC

 2
The cstrings psect may be allocated an address using a class, for example the ROMDATA class. Each
class is specified as using either byte or word addresses. ROMDATA uses word address. Thus, if ROMDATA
is defined to cover the address range 8000h-BFFFh, and cstrings was positioned:

-pcstrings=ROMDATA

then the cstrings psect will be placed somewhere in the word address range 8000h to BFFFh and the
map file will show that the cstrings psect was placed at a byte address somewhere between 10000h
and 17FFEh. That is, the linker knows that the class uses word addresses and that the psect needs a byte
address (since it has a delta value of 1) and has automatically scaled the addresses used.

The CODE class uses word addresses. To specify addresses for the textn psects which are in the CODE
class (and have a delta value of 2), the linker does not need to scale any of the addresses. For example,
to position the textn psects in the word address range 0 to 4FFh, the linker option is straightforward:

-ACODE=0-4FFh

and the map file will show the textn psect as residing somewhere in the word address range 0 to 4FFh.

The difference between the cstrings and textn psects is that the textn psects are in the CODE class, but
that the cstrings psect is not in the ROMDATA class, even though it can use the ROMDATA class to specify
an relocation address. To determine whether a class uses word or byte addresses, look at either the
assembler listing for your program or the run-time assembler file to see what the delta value is for psects
that are in the class in question.

2.4.3 Bit addresses

The other type of address that is sometimes seen are bit addresses. The compiler will produce a range
of addresses that bit objects take up after compilation if there are any objects defined as type bit in the
source. The addresses uses in this case are bit addresses. Bit objects can only reside in RAM and are
accessed via a special bit assembler instruction. The address used with this instruction is a byte address
and a bit offset (the bit number within that byte). To convert a bit address to a byte address you simply
divide it by 8 (the number of bits in a byte); the quotient is the byte address and the remainder is the bit
offset. Bit psects are not usually explicitly position via a -p linker option since they are part of a class,
but if they were positioned in this way, a bit address would be used.
HI-TECH PICC Lite compiler 49

Tutorials

 2
50

 3
Using HTLPIC

3.1 Introduction
This chapter covers HTL, the HI-TECH C Programmer's development Lite environment. It assumes that
you have already installed PIC LITE C.

3.1.1 Starting HTLPIC

To start HTLPIC, simply type htlpic at the MS-DOS prompt. After a brief period of disk activity you
will be presented with a screen similar to the one shown in Figure 3 - 1.

The initial HTLPIC screen is broken into three windows. The top window contains the menu bar, the
middle window the HTLPIC text editor, and the bottom window is the message window. Other windows
may appear when certain menu items are selected. The editor window is what you will use most of the
time.

Figure 3 - 1 HTLPIC Startup Screen
HI-TECH PICC Lite compiler 51

Using HTLPIC

 3
HTLPIC uses the HI-TECH Windows user interface to provide a text screen-based user interface. This
has multiple overlapping windows and pull-down menus. The user interface features which are common
to all HI-TECH Windows applications are described later in this chapter.

Alternatively, HTLPIC can use a single command line argument. This is either the name of a text file,
or the name of a project file. (Project files are discussed in a later section of this chapter.) If the argument
has an extension .prj, HTLPIC will attempt to load a project file of that name. File names with any other
extension will be treated as text files and loaded by the editor.

If an argument without an extension is given, HTLPIC will first attempt to load a .prj file, then a .c file.
For example, if the current directory contains a file called x.c and HTLPIC is invoked with the
command:

htlpic x

it will first attempt to load x.prj and when that fails, will load x.c into the editor. If no source file is loaded
into the editor, an empty file with name untitled will be started.

3.2 The HI-TECH Windows User Interface
The HI-TECH Windows user interface used by HTLPIC provides a powerful text screen based user
interface. This can be used through the keyboard alone, or with a combination of keyboard and mouse
operations. For new users most operations will be simpler using the mouse, however, as experience with
the package is gained, you will learn hot-key sequences for the most commonly used functions.

3.2.1 Environment variables

To use the HI-TECH C compiler, only one DOS environment variable need be present. This is a path to
a temporary location where intermediate files may be stored. The variable is called TEMP and it should
be automatically placed into you autoexec.bat file when the compiler is installed.

As this path is used to specify the location of temporary files, it should not be very long or the command
lines that are generated to drive the compiler may exceed the DOS command line size limit. Typically
C:\TEMP is chosen as the temporary file path.

3.2.2 Hardware Requirements

HI-TECH Windows based applications will run on any MS-DOS based machine with a standard display
capable of supporting text screens of 80 columns by 25 rows or more. Higher resolution text modes like
the EGA 80 x 43 mode will be recognised and used if the mode has already been selected before
HTLPIC is executed. Higher modes can also be used with a /screen:xx option as described below.
Problems may be experienced with some poorly written VGA utilities. These may initialize the
hardware to a higher resolution mode but leave the BIOS data area in low memory set to the values for
an 80 x 25 display.
52

The HI-TECH Windows User Interface

 3
It is also possible to have HTLPIC set the screen display mode on EGA or VGA displays to show more
than 25 lines. The option /screen:xx where xx is one of 25, 28, 43 or 50 will cause HTLPIC to set the
display to that number of lines, or as close as possible. EGA display supports only 25 and 43 line text
screens, while VGA supports 28 and 50 lines as well.

The display will be restored to the previous mode after HTLPIC exits. The selected number of lines will
be saved in the htlpic.ini file and used for subsequent invocations of HTLPIC unless overridden by
another /screen option.

HTLPIC will recognize and use any mouse driver which supports the standard INT 33H interface.
Almost all modern mouse drivers support this standard device driver interface. Some older mouse
drivers are missing a number of the driver status calls. If you are using such a mouse driver, HTLPIC
will still work with the mouse, but the Setup... dialog in the <<>> menu will not work.

3.2.3 Colours

Colours are used in two ways in HTLPIC. First, there are colours associated with the screen display.
These can be changed to suit your own preference. The second use of colour is to optionally code text
entered into the text window. This assists you to see the different elements of a program as it is entered
and compiled. These colours can also be changed to suit your requirements. Colours comprise two
elements: the actual colour; and its attributes (such as bright or inverse). Table 3 - 1 on page 54 shows
the colours and their values, whilst Table 3 - 2 on page 54 shows the attributes and their meaning.

Any colours are valid for the foreground but only colours 0 to 7 are valid for the background. Table 3 -
3 on page 55 shows the definition settings for the colours used by the editor when colour coding is
selected.

The standard colour schemes for both the display colours and the text editor colour coding can be seen
in the colour settings section of the htlpic.ini file. The first value in a colour definition is the foreground
colour and the second is the background colour. To set the colours to other than the default sets you
should remove the # before each line, then select the new colour value.

The htlpic.ini file also contains an example of an alternative standard colour scheme. The same process
can be used to set the colour scheme for the menu bars and menus.

3.2.4 Pull-Down Menus

HI-TECH Windows includes a system of pull-down menus which operate from a menu bar across the
top of the screen. The menu bar is broken into a series of words or symbols, each of which is the title of
a single pull-down menu.

The menu system can be used with the keyboard, mouse, or a combination of mouse and keyboard
actions. The keyboard and mouse actions that are supported are listed in Table 3 - 4 on page 55
HI-TECH PICC Lite compiler 53

Using HTLPIC

 3
3.2.4.1 Keyboard Menu Selection
To select a menu item by keyboard press alt-space to open the menu system. Then use the arrow keys
to move to the desired menu and highlight the item required. When the item required is highlighted
select it by pressing enter. Some menu items will be displayed with lower intensity or a different colour
and are not selectable. These items are disabled because their selection is not appropriate within the
current context of the application. For example, the Save project item will not be selectable if no project
has been loaded or defined.

Table 3 - 1 Colour values

Value Colour
0 black
1 blue
2 green
3 cyan
4 red
5 magenta
6 brown
7 white
8 grey
9 bright blue
10 bright green
11 bright cyan
12 bright red
13 bright magenta
14 yellow
15 bright white

Table 3 - 2 Colour attributes

Attribute description
normal: normal text colour
bright: bright/highlighted text colour
inverse: inverse text colour
frame: window frame colour
title: window title colour
button: colour for any buttons in a window
54

The HI-TECH Windows User Interface

 3
3.2.4.2 Mouse Menu Selection
To open the menu system, move the pointer to the title of the menu which you require and press the left
button. You can browse through the menu system by holding the left button down and dragging the
mouse across the titles of several menus, opening each in turn. You may also operate the menu system

Table 3 - 3 Colour coding settings

Setting Description
C_wspace: White space - foreground colour affects cursor
C_number: Octal, decimal and hexadecimal numbers
C_alpha: Alphanumeric variable, macro and function names
C_punct: Punctuation characters etc.
C_keyword: C keywords and variable types: eg int, static, etc.
C_brace: Open and close braces: { }
C_s_quote: Text in single quotes
C_d_quote: Text in double quotes
C_comment: Traditional C style comments: /* ... */
Cpp_comment C++ style comments: // ...
C_preprocessor: C pre-processor directives: #blah
Include_file: Include file names
Error: Errors - anything incorrect detected by the editor
Asm_code: Inline assembler code (#asm...#endasm)
Asm-comment: Assembler comments: ; ...

Table 3 - 4 Menu system key and mouse actions

Action Key Mouse
Open menu Alt-space Press left button in menu bar or press middle button

anywhere in screen
Escape from menu Alt-space or Escape Press left button outside menu system displays
Select item Enter Release left or centre button on highlighted item or

click left or centre button on an item
Next menu Right arrow Drag to right
Previous menu Left arrow Drag to left
Next item Down arrow Drag downwards
Previous item Up arrow Drag upwards
HI-TECH PICC Lite compiler 55

Using HTLPIC

 3
with the middle button on three button mice. Press the middle button to bring the menu bar to the front.
This makes it selectable even if it is completely hidden by a zoomed window.

Once a menu has been opened, two styles of selection are possible. If the left or middle button is released
while no menu item is highlighted, the menu will be left open. Then you can select using the keyboard
or by moving the pointer to the desired menu item and clicking the left or middle mouse button. If the
mouse button is left down after the menu is opened, you can select by dragging the mouse to the desired
item and releasing the button.

3.2.4.3 Menu Hot Keys
When browsing through the menu system you will notice that some menu items have hot key sequences
displayed. For example, the HTLPIC menu item Save has the key sequence alt-s shown as part of the
display. When a menu item has a key equivalent, it can be selected directly by pressing that key without
opening the menu system. Key equivalents will be either alt-alphanumeric keys or function keys. Where
function keys are used, different but related menu items will commonly be grouped on the one key. For
example, in HTLPIC F3 is assigned to Compile and Link, shift-F3 is assigned to Compile to .OBJ and
ctrl-F3 is assigned to Compile to .AS.

Key equivalents are also assigned to entire menus, providing a convenient method of going to a
particular menu with a single keystroke. The key assigned will usually be alt and the first letter of the
menu name, for example alt-e for the Edit menu. The menu key equivalents are distinguished by being
highlighted in a different colour (except monochrome displays) and are highlighted with inverse video
when the alt key is depressed. A full list of HTLPIC key equivalents is shown in Table 3 - 5 on page 57.

3.2.5 Selecting windows

HI-TECH Windows allows you to overlap or tile windows. Using the keyboard, you can bring a window
to the front by pressing ctrl-enter one or more times. Each time ctrl-enter is pressed, the rear-most
window is brought to the front and the other windows shuffle one level towards the back. A series of
ctrl-enter presses will cycle endlessly through the window hierarchy.

Using the mouse, you can bring any visible window to the front by pressing the left button in its content
region1. A window can be made rearmost by holding the alt key down and pressing the left button in its
content region. If a window is completely hidden by other windows, it can usually be located either by
pressing ctrl-enter a few times or by moving other windows to the back with alt-left-button.

Some windows will not come to the front when the left button is pressed in them. These windows have
a special attribute set by the application and are usually made that way for a good reason. To give an
example, the HTLPIC compiler error window will not be made front-most if it is clicked. Instead it will

1. Pressing the left mouse button in a window frame has a completely different effect, as discussed later in
this chapter.
56

The HI-TECH Windows User Interface

 3
Table 3 - 5 HTLPIC menu hot keys

Key Meaning
Alt-O Open editor file
Alt-N Clear editor file
Alt-S Save editor file
Alt-A Save editor file with new name
Alt-Q Quit to DOS
Alt-J DOS Shell
Alt-F Open File menu
Alt-E Open Edit menu
Alt-I Open Compile menu
Alt-M Open Make menu
Alt-R Open Run menu
Alt-T Open Options menu
Alt-U Open Utility menu
Alt-H Open Help menu
Alt-P Open Project file
Alt-W Warning level dialog
Alt-Z Optimisation menu
Alt-D Run DOS command
F3 Compile and link single file
Shift-F3 Compile to object file
Ctrl-F3 Compile to assembler code
Ctrl-F4 Retrieve last file
F5 Make target program
Shift-F5 Re-link target program
Ctrl-F5 Re-make all objects and target program
Shift-F7 User defined command 1
Shift-F8 User defined command 2
Shift-F9 User defined command 3
Shift-F10 User defined command 4
F2 Search in edit window
Alt-X Cut to clipboard
Alt-C Copy to clipboard
Alt-V Paste from clipboard
HI-TECH PICC Lite compiler 57

Using HTLPIC

 3
accept the click as if it were already the front window. This allows the mouse to be used to select the
compiler errors listed, while leaving the editor window at the front, so the program text can be altered.

3.2.6 Moving and Resizing Windows

Most windows can be moved and resized by the user. There is nothing on screen to distinguish windows
which cannot be moved or resized. If you attempt to move or resize a window and nothing happens, it
indicates that the window cannot be resized. Some windows can be moved but not resized, usually
because their contents are of a fixed size and resizing would not make sense. The HTLPIC calculator is
an example of a window which can be moved but not resized.

Windows can be moved and resized using the keyboard or the mouse. Using the keyboard, move/resize
mode can be entered by pressing ctrl-alt-space. The application will respond by replacing the menu bar
with the move/resize menu strip. This allows the front most window to be moved and resized. When the
resizing is complete, press enter to return to the operating function of the window. A full list of all the
operating keys is shown in Table 3 - 6.

Move/resize mode can be exited with any normal application action, like a mouse click, pressing a hot
key or activating the menu system by pressing alt-space. There are other ways of moving and resizing
windows:

r Windows can be moved and resized using the mouse. You can move any visible window by
pressing the left mouse button on its frame, dragging it to a new position and releasing the
button. If a window is “grabbed” near one of its corners the pointer will change to a diamond.
Then you can move the window in any direction, including diagonally. If a window is grabbed
near the middle of the top or bottom edge the pointer will change to a vertical arrow. Then you
can move the window vertically. If a window is grabbed near the middle of the left or right edge
the pointer will change to a horizontal arrow. Then it will only be possible to move the window

Table 3 - 6 Resize mode keys

Key Action
Left arrow Move window to right
Right arrow Move window to left
Up arrow Move window upwards
Down arrow Move window downwards
Shift-left arrow Shrink window horizontally
Shift-right arrow Expand window horizontally
Shift-up arrow Shrink window vertically
Shift-down arrow Expand window vertically
Enter or Escape Exit move/resize mode
58

The HI-TECH Windows User Interface

 3
horizontally.

r If a window has a scroll bar in its frame, pressing the left mouse button in the scroll bar will
not move the window. Instead it activates the scroll bar, sending scroll messages to the
application. If you want to move a window which has a frame scroll bar, just select a different
part of the frame.

r Windows can be resized using the right mouse button.You can resize any visible window by
pressing the right mouse button on its bottom or left frame. Then drag the frame to a new
boundary and release the button. If a window is grabbed near its lower right corner the pointer
changes to a diamond and it is be possible to resize the window in any direction. If the frame
is grabbed anywhere else on the bottom edge, it is only possible to resize vertically. If the
window is grabbed anywhere else on the right edge it is only possible to resize horizontally. If
the right button is pressed anywhere in the top or left edges nothing will happen.

r You can also zoom a window to its maximum size. The front most window can be zoomed by
pressing shift-(keypad)+, if it is zoomed again it reverts to its former size. In either the zoomed
or unzoomed state the window can be moved and resized. Zoom effectively toggles between
two user defined sizes. You can also zoom a window by clicking the right mouse button in its
content region.

3.2.7 Buttons

Some windows contain buttons which can be used to select particular actions immediately. Buttons are
like menu items which are always visible and selectable. A button can be selected either by clicking the
left mouse button on it or by using its key equivalent. The key equivalent to a button will either be
displayed as part of the button, or as part of a help message somewhere else in the window. For example,
the HTLPIC error window (Figure 3 - 5 on page 64) contains a number of buttons, to select HELP you
would either click the left mouse button on it or press F1.

3.2.8 The Setup menu

If you open the system menu, identified by the symbol <<>> on the menu bar, you will find two entries:
the About HTLPIC ... entry, which displays information about the version number of HTLPIC; and the
Setup ... entry. Selecting the Setup entry opens a dialog box as shown in Figure 3 - 2 on page 60. This
box displays information about HTLPIC's memory usage, and allows you to set the mouse sensitivity,
whether the time of day is displayed in the menu bar, and whether sound is used. After changing mouse
sensitivity values, you can test them by clicking on the Test button. This will change the mouse values
so you can test the altered sensitivity. If you subsequently click Cancel, they will be restored to the
previous values. Selecting OK will confirm the altered values, and save them in HTLPIC's initialisation
file, so they will be reloaded next time you run HTLPIC. The sound and clock settings will also be stored
in the initialisation file if you select OK.
HI-TECH PICC Lite compiler 59

Using HTLPIC

 3
3.3 Tutorial: Creating and Compiling a C Program
This tutorial should be sufficient to get you started using HTLPIC. It does not attempt to give you a
comprehensive tour of HTLPIC's features - that is left to the reference section of this chapter. Even if
you are an experienced C programmer but have not used a HI-TECH Windows-based application before,
we strongly suggest that you complete this tutorial.

Before starting HTLPIC, you need to create a work directory. Make sure you are logged to the root
directory on your hard disk and type the following commands:

C:\> md tutorial
C:\> cd tutorial
C:\> TUTORIAL> htlpic

You will be presented with the HTLPIC startup screen. At this stage, the editor is ready to accept
whatever text you type. A flashing block cursor should be visible in the top left corner of the edit
window. You are now ready to enter your first C program using HTLPIC.

Figure 3 - 2 Setup Dialogue
60

Tutorial: Creating and Compiling a C Program

 3
#include<pic.h>
/*
* Demo program - flashes LEDs on
* Port B, responds to switch press
* on RA1.

* LEDs assumed to be active low.
*/

#define PORTBIT(adr, bit) ((unsigned)(&adr)*8+(bit))
static bit button @ PORTBIT(PORTA, 1);

main(void)
{

unsigned i;
unsigned char j;
TRISB = 0; /* all bits output */
j = 0;

for(;;) {
PORTB = 0x00; /* turn all on */
for(i = 16000 ; --i ;)

continue;
PORTB = ~j; /* output value of j */
for(i = 16000 ; --i ;)

continue;
if(button == 0) /* if switch pressed, increment */

j++;
}

}

Type in the LED program, pressing enter once at the end of each line. You can enter blank lines by
pressing enter without typing any text. Intentionally leave out the semi-colon at the end of the first line
in main, as shown above:

Figure 3 - 3 shows the screen as it should appear after entry of the LED program.

You now have a C program (complete with one error!) entered and almost ready for compilation. All
you need to do is save it to a disk file and then invoke the compiler. In order to save your source code to
disk, you will need to select the Save item from the File menu (Figure 3 - 4 on page 63)
HI-TECH PICC Lite compiler 61

Using HTLPIC

 3
If you do not have a mouse, follow these steps:

r Open the menu system by pressing alt-space

r Move to the Edit menu using the right arrow key

r Move down to the Save item using the down arrow key

r When the Save item is highlighted, select it by pressing the enter key.

If you are using the mouse, follow these steps:

r Open the File menu by moving the pointer to the word File in the menu bar and pressing the
left button

r Highlight the Save item by dragging the mouse downwards with the left button held down, until
the Save item is highlighted

r When the Save item is highlighted, select it by releasing the left button.

When the File menu (Figure 3 - 4) was open, you may have noticed that the Save item included the text
alt-s at the right edge of the menu. This indicates that the save command can also be accessed directly

Figure 3 - 3 LED Flashing program in HTLPIC
62

Tutorial: Creating and Compiling a C Program

 3
using the hot-key command alt-s. A number of the most commonly used menu commands have hot-key
equivalents which will either be alt-alphanumeric sequences or function keys.

After Save has been selected, you should be presented with a dialog prompting you for the file name. If
HTLPIC needs more information, such as a file name, before it is able to act on a command, it will
always prompt you with a standard dialog.

The dialog contains an edit line where you can enter the file name to be used, and a number of buttons.
These may be used to perform various actions within the dialog. A button may be selected by clicking
the left mouse button with the pointer positioned on it, or by using its key equivalent. The text in the edit
line may be edited using the standard editing keys: left arrow, right arrow, backspace, del and ins. Ins
toggles the line editor between insert and overwrite mode.

In this case, save your C program to a file called myled.c. Type myled.c and then press enter. There
should be a brief period of disk activity as HTLPIC saves the file.

You are now ready to actually compile the program. To compile and link in a single step, select the
Compile and link item from the Compile menu, using the pull down menu system as before. Note that
Compile and link has key F3 assigned to it - in future you may wish to save time by using this key.

You will be asked to enter some information at this point:

Figure 3 - 4 HTLPIC File Menu
HI-TECH PICC Lite compiler 63

Using HTLPIC

 3
Select Processor
Select the processor you are using.

Floating Point Type
Select 24-bit (default).

Optimisation
Select Full Optimisation, with the default Global Optimisation Level of 1

Output File Type
Select Bytecraft .COD or Intel .HEX.

This time, the compiler will not run to completion. This is because we deliberately omitted a semicolon
on the end of a line, in order to see how HTLPIC handles compiler errors. After a couple of seconds of
disk activity, you should hear a “splat” noise. The message window will be replaced by a window
containing a number of buttons and describing two errors as shown in Figure 3 - 5 on page 64.

The text in the frame of the error window shows the number of compiler errors generated, and which
phase of the compiler generated them. Most errors will come from p1.exe and cglpic.exe. Cpp.exe and
hlink.exe can also return errors. In this case, the error window frame contains the message:

Figure 3 - 5 Error window
64

Tutorial: Creating and Compiling a C Program

 3
2 errors, 0 warnings from p1.exe

indicating that pass 1 of the compiler found 2 fatal errors, with the second error being caused by the first
one. It is possible to configure HTLPIC so that non-fatal warnings will not stop compilation. If only
warnings are returned, an additional button will appear, labelled CONTINUE. Selecting this button (or
F4) will resume the compilation.

In this case, the error message ; expected will be highlighted and the cursor will have been placed on the
start of the line after the unsigned i declaration. This is where the error was first detected. The error
window contains a number of buttons which allow you to select which error you wish to handle, clear
the error status display, or obtain an explanation of the currently highlighted error. In order to obtain an
explanation of the error message, either select the HELP button with a mouse click, or press F1.

The error explanation for the missing semi-colon does not give any more information than we already
have. However, the explanations for some of the more unusual errors produced by the compiler can be
very helpful. All errors produced by the pre-processor (cpp), pass 1 (p1), code generator (cglpic),
assembler (aspic) and linker (hlink) are handled. You may dismiss the error explanations by selecting
the HIDE button (press escape or use the mouse).

In this instance HTLPIC has analysed the error, and is prepared to fix the error itself. This is indicated
by the presence of the FIX button in the bottom right-hand corner of the error window. If HTLPIC is
unable to analyse the error, it will not show the FIX button. Clicking on the FIX button, or pressing F6
will fix the error by adding a semicolon to the end of the previous line. A “bip-bip” sound will be
generated, and if there was more than one error line in the error window, HTLPIC will move to the next
error.

To manually correct the error, move the cursor to the end of the declaration and add the missing semi-
colon. If you have a mouse, simply click the left button on the position to which you want to move the
cursor. If you are using the keyboard, move the cursor with the arrow keys. Once the missing semi-colon
has been added, you are ready to attempt another compilation.

This time, we will “short circuit” the edit-save-compile cycle by pressing F3 to invoke the Compile and
link menu item. HTLPIC will automatically save the modified file to a temporary file, then compile it.
The message window will then display the commands issued to each compiler phase in turn. If all goes
well, you will hear a tone and see the message Compilation successful.

This tutorial has presented a simple overview of single file edit/compile development. HTLPIC is also
capable of supporting multi-file projects (including mixed C and assembly language sources) using the
project facility. The remainder of this chapter presents a detailed reference for the HTLPIC menu
system, editor and project facility.
HI-TECH PICC Lite compiler 65

Using HTLPIC

 3
3.4 The HTLPIC editor
HTLPIC has a built-in text editor designed for the creation and modification of program text. The editor
is loosely based on WordStar with a few minor differences and some enhancements for mouse-based
operation. If you are familiar with WordStar or any similar editor you should be able to use the HTLPIC
editor without further instruction. HTLPIC also supports the standard PC keys, and thus should be
readily usable by anyone familiar with typical MS-DOS or Microsoft Windows editors.

The HTLPIC editor is based in its own window, known as the edit window. The edit window is broken
up into three areas, the frame, the content region and the status line.

3.4.1 Frame

The frame indicates the boundary between the edit window and the other windows on the desktop. The
name of the current edit file is displayed in the top left corner of the frame. If a newly created file is being
edited, the file name will be set to “untitled”. The frame can be manipulated using the mouse, allowing
the window to be moved around the desktop and re-sized.

3.4.2 Content Region

The content region, which forms the largest portion of the window, contains the text being edited. When
the edit window is active, the content region will contain a cursor indicating the current insertion point.
The text in the content region can be manipulated using keyboard commands alone, or a combination of
keyboard commands and mouse actions. The mouse can be used to position the cursor, scroll the text
and select blocks for clipboard operations.

3.4.3 Status Line

The bottom line of the edit window is the status line. It contains the following information about the file
being edited:

r Line shows the current line number, counting from the start of the file, and the total number of
lines in the file.

r Col shows the number of the column containing the cursor, counting from the left edge of the
window.

r If the status line includes the text ^K after the Col entry, it indicates that the editor is waiting
for the second character of a

r WordStar ctrl-k command. See the section Keyboard Commands on page 67, for a list of the
valid ctrl-k commands.

r If the status line includes the text ^Q after the Col entry, the editor is waiting for the second
character of a WordStar ctrl-q command. See the section Keyboard Commands on page 67,
66

The HTLPIC editor

 3
for a list of the valid ctrl-q commands.

r Insert indicates that text typed on the keyboard will be inserted at the cursor position. Using the
insert mode toggle command (the ins key on the keypad, or ctrl-v), the mode can be toggled
between Insert and Overwrite. In overwrite mode, text entered on the keyboard will overwrite
characters under the cursor, instead of inserting them before the cursor.

r Indent indicates that the editor is in auto-indent mode. Auto-indent mode is toggled using the
ctrl-q i key sequence. By default, auto-indent mode is enabled. When auto-indent mode is
enabled, every time you add a new line the cursor is aligned under the first non-space character
in the preceding line. If the file being edited is a C file, the editor will default to C mode. In this
mode, when an opening brace ("{") is typed, the next line will be indented one tab stop. In
addition, it will automatically align a closing brace ("}") with the first non-blank character on
the line containing the opening brace. This makes the auto-indent mode ideal for entering C
code.

r The SEARCH button may be used to initiate a search operation in the editor. To select SEARCH,
click the left mouse button anywhere on the text of the button. The search facility may also be
activated using the F2 key and the WordStar ctrl-q f sequence.

r The NEXT button is only present if there has already been a search operation. It searches
forwards for the next occurrence of the search text. NEXT may also be selected using shift-F2
or ctrl-l.

r The PREVIOUS button is used to search for the previous occurrence of the search text. This
button is only present if there has already been a search operation. The key equivalents for
PREVIOUS are ctrl-F2 and ctrl-p.

3.4.4 Keyboard Commands

The editor accepts a number of keyboard commands, broken up into the following categories:

r Cursor movement commands

r Insert/delete commands

r Search commands

r Block and Clipboard operations and

r File commands.

Each of these categories contains a number of logically related commands. Some of the cursor
movement commands and block selection operations can also be performed with the mouse.
HI-TECH PICC Lite compiler 67

Using HTLPIC

 3
Table 3 - 7, “Editor keys,” on page 68 provides an overview of the available keyboard commands and
their key mappings. A number of the commands have multiple key mappings, some also have an

Table 3 - 7 Editor keys

Command Key WordStar key
Character left left arrow Ctrl-S
Character right right arrow Ctrl-D
Word left Ctrl-left arrow Ctrl-A
Word right Ctrl-right arrow Ctrl-F
Line up up arrow Ctrl-E
Line down down arrow Ctrl-X
Page up PgUp Ctrl-R
Page down PgDn Ctrl-C
Start of line Home Ctrl-Q S
End of line End Ctrl-Q D
Top of window Ctrl-Q E
Bottom of window Ctrl-Q X
Start of file Ctrl-Home Ctrl-Q R
End of file Ctrl-End Ctrl-Q C
Insert mode toggle Ins Ctrl-V
Insert CR at cursor Ctrl-N
Open new line below cursor Ctrl-O
Delete char under cursor Del Ctrl-G
Delete char to left of cursor Backspace Ctrl-H
Delete line Ctrl-Y
Delete to end of line Ctrl-Q Y
Search F2 Ctrl-Q F
Search forward Shift-F2 Crtl-L
Search backward Alt-F2 Ctrl-P
Toggle auto indent mode Ctrl-Q I
Zoom or unzoom window Ctrl-Q Z
Open file Alt-O
New file Alt-N
Save file Alt-S
Save file - New name Alt-A
68

The HTLPIC editor

 3
equivalent menu item.

The Zoom command, ctrl-q z, is used to toggle the editor between windowed and full-screen mode. In
full screen mode, the HTLPIC menu bar may still be accessed either by pressing the alt key or by using
the middle button on a three button mouse.

3.4.5 Block Commands

In addition to the movement and editing command listed in the “Editor Keys” table, the HTLPIC editor
also supports WordStar style block operations and mouse driven cut/copy/paste clipboard operations.

The clipboard is implemented as a secondary editor window, allowing text to be directly entered and
edited in the clipboard. The WordStar style block operations may be freely mixed with mouse driven
clipboard and cut/copy/paste operations.

The block operations are based on the ctrl-k and ctrl-q key sequences which are familiar to anyone who
has used a WordStar compatible editor.

Table 3 - 8, “Block operation keys,” on page 69 lists the WordStar compatible block operations which
are available.

The block operations behave in the usual manner for WordStar type editors with a number of minor
differences. “Backwards” blocks, with the block end before the block start, are supported and behave
exactly like a normal block selection. If no block is selected, a single line block may be selected by
keying block-start (ctrl-k b) or block-end (ctrl-k k). If a block is already present, any block start or end
operation has the effect of changing the block bounds.

Table 3 - 8 Block operation keys

Command Key sequence
Begin block Ctrl-K B
End block Ctrl-K K
Hide or show block Ctrl-K H
Go to block start Ctrl-Q B
Go to block end Ctrl-Q K
Copy block Ctrl-K C
Move block Ctrl-K V
Delete block Ctrl-K Y
Read block from file Ctrl-K R
Write block to file Ctrl-K W
HI-TECH PICC Lite compiler 69

Using HTLPIC

 3
Begin Block ctrl-k b
The key sequence ctrl-k b selects the current line as the start of a block. If a block is already present, the
block start marker will be shifted to the current line. If no block is present, a single line block will be
selected at the current line.

End Block ctrl-k k
The key sequence ctrl-k k selects the current line as the end of a block. If a block is already present, the
block end marker will be shifted to the current line. If no block is present, a single line block will be
selected at the current line.

Go To Block Start ctrl-q b
If a block is present, the key sequence ctrl-q b moves the cursor to the line containing the block start
marker.

Go To Block End ctrl-q k
If a block is present, the key sequence ctrl-q k moves the cursor to the line containing the block end
marker.

Block Hide Toggle ctrl-k h
The block hide/display toggle, ctrl-k h is used to hide or display the current block selection. Blocks may
only be manipulated with cut, copy, move and delete operations when displayed. The bounds of hidden
blocks are maintained through all editing operations so a block may be selected, hidden and re-displayed
after other editing operations have been performed. Note that some block and clipboard operations
change the block selection, making it impossible to re-display a previously hidden block.

Copy Block ctrl-k c
The ctrl-k c command inserts a copy of the current block selection before the line which contains the
cursor. A copy of the block will also be placed in the clipboard. This operation is equivalent to a
clipboard Copy operation followed by a clipboard Paste operation.

Move Block ctrl-k v
The ctrl-k v command inserts the current block before the line which contains the cursor, then deletes
the original copy of the block. That is, the block is moved to a new position just before the current line.
A copy of the block will also be placed in the clipboard. This operation is equivalent to a clipboard Cut
operation followed by a clipboard Paste operation.

Delete Block ctrl-k y
The ctrl-k y command deletes the current block. A copy of the block will also be placed in the clipboard.
This operation may be undone using the clipboard Paste command. This operation is equivalent to the
clipboard Cut command.
70

The HTLPIC editor

 3
Read block from file ctrl-k r
The ctrl-k r command prompts the user for the name of a text file which is to be read and inserted before
the current line. The inserted text will be selected as the current block. This operation may be undone
by deleting the current block.

Write block to file ctrl-k w
The ctrl-k w command prompts the user for the name of a text file to which the current block selection
will be written. This command does not alter the block selection, editor text or clipboard in any way.

Indent
This operation is available via the Edit menu. It will indent by one tab stop, the current block or the
current line if no block is selected.

Outdent
This is the opposite of the previous operation, i.e. it removes one tab from the beginning of each line in
the selection, or the current line if there is no block selected. It is only accessible via the Edit menu.

Comment/Uncomment
Also available in the Edit menu, this operation will insert or remove a C++ style comment leader (//)
at the beginning of each line in the current block, or the current line if there is no block selected. If a line
is currently uncommented, it will be commented, and if it is already commented, it will be
uncommented. This is repeated for each line in the selection. This allows a quick way of commenting
out a portion of code during debugging or testing.

3.4.6 Clipboard Editing

The HTLPIC editor also supports mouse driven clipboard operations, similar to those supported by
several well known graphical user interfaces.

Text may be selected using mouse click and drag operations, deleted, cut or copied to the clipboard, and
pasted from the clipboard. The clipboard is based on a standard editor window and may be directly
manipulated by the user. Clipboard operations may be freely mixed with WordStar style block
operations.

3.4.6.1 Selecting Text
Blocks of text may be selected using left mouse button and click or drag operations. The following
mouse operations may be used:

r A single click of the left mouse button will position the cursor and hide the current selection.
The Hide menu item in the Edit menu, or the ctrl-k h command, may be used to re display a
block selection which was cancelled by a mouse click.

r A double click of the left mouse button will position the cursor and select the line as a single
line block. Any previous selection will be cancelled.
HI-TECH PICC Lite compiler 71

Using HTLPIC

 3
r If the left button is pressed and held, a multi line selection from the position of the mouse click
may be made by dragging the mouse in the direction which you wish to select. If the mouse
moves outside the top or bottom bounds of the editor window, the editor will scroll to allow a
selection of more than one page to be made. The cursor will be moved to the position of the
mouse when the left button is released. Any previous selection will be cancelled.

3.4.6.2 Clipboard Commands
The HTLPIC editor supports a number of clipboard manipulation commands which may be used to cut
text to the clipboard, copy text to the clipboard, paste text from the clipboard, delete the current selection
and hide or display the current selection. The clipboard window may be displayed and used as a
secondary editing window. A number of the clipboard operations have both menu items and hot key
sequences. The following clipboard operations are available:

Cut alt-x

The Cut option copies the current selection to the clipboard and then deletes the selection. This operation
may be undone using the Paste operation. The previous contents of the clipboard are lost.

Copy alt-c
The Copy option copies the current selection to the clipboard without altering or deleting the selection.
The previous contents of the clipboard are lost.

Paste alt-v
The Paste option inserts the contents of the clipboard into the editor before the current line. The contents
of the clipboard are not altered.

Hide ctrl-k h
The Hide option toggles the current selection between the hidden and displayed state. This option is
equivalent to the WordStar ctrl-k h command.

Show clipboard
This menu options hides or displays the clipboard editor window. If the clipboard window is visible, it
is hidden. If the clipboard window is hidden it will be displayed and selected as the current window. The
clipboard window behaves like a normal editor window in most respects except that no block operations
may be used. This option has no key equivalent.

Clear clipboard
This option clears the contents of the clipboard, and cannot be undone. If a large selection is placed in
the clipboard, you should use this option to make extra memory available to the editor after you have
completed your clipboard operations.
72

HTLPIC menus

 3
Delete selection
This menu option deletes the current selection without copying it to the clipboard. Delete selection
should not be confused with Cut as it cannot be reversed and no copy of the deleted text is kept. Use this
option if you wish to delete a block of text without altering the contents of the clipboard.

3.5 HTLPIC menus
This section presents a item-by-item description of each of the HTLPIC menus. The description of each
menu includes a screen print showing the appearance of the menu within a typical HTLPIC screen.

3.5.1 <<>> menu

The <<>> (system) menu is present in all HI-TECH Windows based applications. It contains handy
system configuration utilities and desk accessories which we consider worth making a standard part of
the desktop.

About HTLPIC ...
The About HTLPIC dialog displays information on the version number of the compiler and the licence
details.

Setup ...
This menu item selects the standard mouse firmware configuration menu, and is present in all HI-TECH
Windows based applications. The “mouse setup” dialog allows you to adjust the horizontal and vertical
sensitivity of the mouse, the ballistic threshold2 of the mouse and the mouse button auto-repeat rate.

This menu item will not be selectable if there is no mouse driver installed. With some early mouse
drivers, this dialog will not function correctly. Unfortunately there is no way to detect drivers which
exhibit this behaviour, because even the “mouse driver version info” call is missing from some of the
older drivers!

This dialog will also display information about what kind of video card and monitor you have, what
DOS version is used and free DOS memory available. See Figure 3 - 2 on page 60

3.5.2 File menu

The File menu contains file handling commands, the HTLPIC Quit command and the pick list:

Open ... alt-O
This command loads a file into the editor. You will be prompted for the file name and if a wildcard (e.g.
“*.C”) is entered, you will be presented with a file selector dialog. If the previous edit file has been
modified but not saved, you will be given an opportunity to save it or abort the Open command.

2. The ballistic threshold of a mouse is the speed beyond which the response of the pointer to further movement
becomes exponential. Some primitive mouse drivers do not support this feature.
HI-TECH PICC Lite compiler 73

Using HTLPIC

 3
New alt-N
The New command clears the editor and creates a new edit file with default name “untitled”. If the
previous edit file has been modified but not saved, you will be given a chance to save it or abort the New
command.+

Save alt-S
This command saves the current edit file. It the file is “untitled”, you will be prompted for a new name,
otherwise the current file name (displayed in the edit window's frame) will be used.

Save as ... alt-A
This command is similar to Save, except that a new file name is always requested.

Autosave ...
This item will invoke a dialog box allowing you to enter a time interval in minutes for auto saving of the
edit file. If the value is non-zero, then the current edit file will automatically be saved to a temporary file
at intervals. Should HTLPIC not exit normally, e.g. if your computer suffers a power failure, the next
time you run HTLPIC, it will automatically restore the saved version of the file.

Quit alt-Q
The Quit command is used to exit from HTLPIC to the operating system. If the current edit file has been
modified but not saved, you will be given an opportunity to save it or abort the Quit command.

Clear pick list
This clears the list of recently-opened files which appear below this option.

Pick list ctrl-F4
The pick list contains a list of the most recently-opened files. A file may be loaded from the pick list by
selecting that file. The last file that was open may be retrieved by using the short-cut ctrl-F4.

3.5.3 Edit menu

The Edit menu contains items relating to the text editor and clipboard. The edit menu is shown in Figure
3 - 6.

Cut alt-X
The Cut option copies the current selection to the clipboard and then deletes the selection. This
operation may be undone using the Paste operation. The previous contents of the clipboard are lost.

Copy alt-C
The Copy option copies the current selection to the clipboard without altering or deleting the selection.
The previous contents of the clipboard are lost.
74

HTLPIC menus

 3
Paste alt-V
The Paste option inserts the contents of the clipboard into the editor before the current line. The contents
of the clipboard are not altered.

Hide
The Hide option toggles the current selection between the hidden and displayed state. This option is
equivalent to the WordStar ctrl-K H command.

Delete selection
This menu option deletes the current selection without copying it to the clipboard. Delete selection
should not be confused with Cut as it cannot be reversed and no copy of the deleted text is kept. Use
this option if you wish to delete a block of text without altering the contents of the clipboard.

Search ...
This option produces a dialog to allow you to enter a string for a search. You can select to search
forwards or backwards by selecting the appropriate button. You can also decide if the search should be
case sensitive and if a replacement string is to be substituted. You make these choices by clicking in the
appropriate brackets.

Figure 3 - 6 HTLPIC Edit Menu
HI-TECH PICC Lite compiler 75

Using HTLPIC

 3
Replace ...
This option is almost the same as the search option. It is used where you are sure you want to search and
replace in the one operation. You can choose between two options. You can search and then decide
whether to replace each time the search string is found. Alternatively, you can search and replace
globally. If the global option is chosen, you should be careful in defining the search string as the replace
can not be undone.

Show clipboard
This menu options hides or displays the clipboard editor window. If the clipboard window is already
visible, it will be hidden. If the clipboard window is currently hidden it will be displayed and selected
as the current window. The clipboard window behaves like a normal editor window in most respects
except that no block operations may be used. This option has no key equivalent.

Clear clipboard
This option clears the contents of the clipboard, and cannot be undone. If a large selection is placed in
the clipboard, you should use this option to make extra memory available to the editor after you have
completed your clipboard operations.

Go to line ...
The Go to line command allows you to go directly to any line within the current edit file. You will be
presented with a dialog prompting you for the line number. The title of the dialog will tell you the
allowable range of line numbers in your source file.

Set tab size ...
This command is used to set the size of tab stops within the editor. The default tab size is 8, values from
1 to 16 may be used. For normal C source code 4 is also a good value. The tab size will be stored as part
of your project if you are using the Make facility.

Indent
Selecting this item will indent by one tab stop the currently highlighted block, or the current line if there
is no block selected.

Outdent
This is the reverse operation to Indent. It removes one tab from the beginning of each line in the currently
selected block, or current line if there is no block.

Comment/Uncomment
This item will insert or remove C++ style comment leaders (//) from the beginning of each line in the
current block, or the current line. This has the effect of commenting out those lines of code so that they
will not be compiled. If a line is already commented in this manner, the comment leader will be removed.
76

HTLPIC menus

 3
C colour coding
This option toggles the colour coding of text in the editor window. It turns on and off the colours for the
various types of text. A mark appears before this item when it is active. For a full description of colours
used in HTLPIC and how to select specific schemes, you should refer to the section, Colours on page 53.

3.5.4 Options menu

The Options menu contains commands which allow selection of compiler options, and target processor.
Selections made in this menu will be stored in a project file, if one is being used. The Options menu is
shown in Figure 3 - 7 on page 77..

Select processor ...
This option activates a dialog box which allows you to select the processor type you wish to use. The
help string at the bottom of the dialogue indicates the amount of ROM space, in words, that each device
contains. In addition the string indicates the number of RAM banks the device contains and the total
amount of general-purpose RAM bytes available. This is the amount of RAM other than that used by
the special function registers. If the help string displays "including common" then some of the RAM
space is taken up by common memory which is used by the compiler for internal use.

Figure 3 - 7 Options Menu
HI-TECH PICC Lite compiler 77

Using HTLPIC

 3
Floating point type ...
This selects the format used for floating point doubles. The default format is the 24-bit truncated IEEE
754 format, but you may choose to use the 32-bit IEEE 754 format. For more information on these
formats, see Floating Point on page 119.

Output file type ...
The default output file type is Bytecraft COD. The other choices are: Motorola S-Record HEX, Intel
HEX, Binary Image, UBROF, Tektronix HEX, American Automation symbolic HEX and Intel
OMF-51. This option will also allow you to specifiy that you want to create a library. A library can only
be created from a project file.

ROM addresses ...
This menu is highlighted when a high-end PIC device is selected from the Select processor menu. This
dialog allows you to specify the address ranges covered by external ROM devices. The addresses are
used to store code and const data. (This option is disabled under PIC LITE)

Map and symbol file options ...
This dialog box allows you to set various options pertaining to debug information, the map file and the
symbol file.

Source level debug info
This menu item is used to enable or disable source level debug information in the current symbol file. If
you are using MPLAB, you should enable this option

Sort map by address
By default, the symbol table in the in the link map will be sorted by name. This option will cause it to
be sorted numerically, based on the value of the symbol.

Suppress local symbols
Prevents the inclusion of all local symbols in the symbol file. Even if this option is not active, the linker
will filter irrelevant compiler generated symbols from the symbol file.

Fake local symbols
This modifies the debug information produced to allow MPLAB to examine most local variables. It also
adjusts source-level single stepping information to be that required by MPLAB. See also Section 5.37
on page 150.

MPLAB-ICD support
This button automatically adjusts the linker settings so that the output code is suitable for the MPLAB
In-Circuit Debugger. This menu item is only highlighted if the selected processor has ICD capability.
78

HTLPIC menus

 3
Save dependency information
With this checked (which is the default), dependency information is saved in the project file. This means
that restarting the HTL is much faster for a large project.

3.5.5 Compile menu

The Compile menu, shown in Figure 3 - 8 on page 79, contains the various forms of the compile
command along with several machine independent compiler configuration options.

Compile and link F3
This command will compile a single source file and then invoke the linker and other utilities to produce
an executable file. If the source file is an .as file, it will be passed directly to the assembler. The output
file will have the same base name as the source file, but a different extension. For example led.c would
be compiled to led.cod.

Compile to .OBJ shift-F3
Compiles a single source file to a .obj file only. The linker and objtohex are not invoked. The .as files
will be passed directly to the assembler. The object file produced will have the same base name as the
source file and the extension .obj.

Figure 3 - 8 HTLPIC Compile Menu
HI-TECH PICC Lite compiler 79

Using HTLPIC

 3
Compile to .AS ctrl-F3
This menu item compiles a single source file to assembly language, producing an assembler file with the
same base name as the source file and the extension .as. This option is handy if you want to examine or
modify the code generated by the compiler. If the current source file is an .as file, nothing will happen.

Preprocess only to .PRE
This runs the source file through the C preprocessor. The output of this action is a .pre file of the same
name as the source file.

Stop on Warnings
This toggle determines whether compilation will be halted when non-fatal errors are detected. A mark
appears against this item when it is active.

Warning level ... alt-W
This command calls up a dialog which allows you set the compiler warning level, i.e. it determines how
selective the compiler is about legal but dubious code. The range of currently implemented warning
levels is -9 to 9, where lower warning levels are stricter. At level 9 all warnings (but not errors) are
suppressed. Level 1 suppresses the func() declared implicit int message which is common when
compiling UNIX-derived code. Level 3 is suggested for compiling code written with less strict (and
K&R) compilers. Level 0 is the default. This command is equivalent to the -W option of the PICL
command.

Optimisation ... alt-Z
Selecting this item will open a dialog allowing you to select different kinds and levels of optimisation.
The default is no optimization. Selections made in this dialog will be saved in the project file if one is
being used.

Identifier length...
By default C identifiers are considered significant only to 31 characters. This command will allow
setting the number of significant characters to be used, between 31 and 255.
80

HTLPIC menus

 3
Disable non-ANSI features
This option is used to enable strict ANSI conformance of all special keywords. HI-TECH C supports the
special keywords such as persistent and interrupt which are used to prevent variables being cleared on
startup, and to handle interrupts using C code. If this option is used, these keywords, for example, are
changed to __persistent and __interrupt respectively so as to strictly conform to the ANSI standard. This
is the same as the -STRICT option when compiling from the command line.

Pre-process assembler files
Selecting this item will make HTLPIC pass assembler files through the pre-processor before
assembling. This makes it possible to use C pre-processor macros and conditionals in assembler files. A
mark appears before the item when it is selected.

Generate assembler listing
This menu option tells the assembler to generate a listing file for each C or assembler source file which
is compiled. The name of the list file is determined from the name of the symbol file, for example led.c
will produce a listing file called led.lst.

Generate C source listing
Selecting this option will cause a C source listing for each C file compiled. The listing file will be named
in the same way as an assembler file (described above) but will contain the C source code with line
numbers, and with tabs expanded. The tab expansion setting is derived from the editor tab stop setting.

You can only generate either a C source listing or an assembler listing.

3.5.6 Make menu

The Make menu (Figure 3 - 9 on page 82) contains all of the commands required to use the HTLPIC
project facility. The project facility allows creation of complex multiple-source file applications with
ease, as well as a high degree of control of some internal compiler functions and utilities. To use the
project facility, it is necessary to follow several steps.

r Create a new project file using the New project ... command. After selecting the project file
name, HTLPIC will present several dialogs to allow you to set up options including the processor
type and optimisation level.

r Enter the list of source file names using the Source file list ... command.

r Set up any special libraries, pre-defined pre-processor symbols, object files or linker options
using the other items in the Make menu.

r Save the project file using the Save project command.

r Compile your project using the Make or Re-Make command.
HI-TECH PICC Lite compiler 81

Using HTLPIC

 3
Make F5
The Make command re-compiles the current project. When Make is selected, HTLPIC re-compiles any
source files which have been modified since the last Make command was issued. HTLPIC determines
whether a source file should be recompiled by testing the modification time and date on the source file
and corresponding object file. If the modification time and date on the source file is more recent than
that of the object file, it will be re-compiled.

If all object (.obj) files are current but the output file cannot be found, HTLPIC will re-link using the
object files already present. If all object files are current and the output file is present and up to date,
HTLPIC will print a message in the message window indicating that nothing was done.

HTLPIC will also automatically check dependencies, i.e. it will scan source files to determine what files
are included, and will include those files in the test to determine if a file needs to be recompiled. In other
words, if you modify a header file, any source files including that header file will be recompiled.

If you forget to use the source file list to select the files to be included, HTLPIC will produce a dialog
warning that no files have been selected. You will then have to select the DONE button or press escape.
This takes you back to the editor window.

Figure 3 - 9 HTLPIC Make Menu
82

HTLPIC menus

 3
Re-make ctrl-F5
The Re-make command forces recompilation of all source files in the current project. This command is
equivalent to deleting all object files and then selecting Make.

Re-link shift-F5
The Re-link command relinks the current project. Any object files which are missing or not up to date
will be regenerated.

Load project ... alt-P
This command loads a pre-defined project file. You are presented with a file selection dialog allowing
a .prj file to be selected and loaded. If this command is selected when the current project has been
modified but not saved, you will be given a chance to save the project or abort the Load project
command. After loading a project file, the message window title will be changed to display the project
file name.

New project ...
This command allows the user to start a new project. All current project information is cleared and all
items in the Make menu are enabled. The user will be given a chance to save any current project and will
then be prompted for the new project's name.

Following entry of the new name HTLPIC will present several dialogs to allow you to configure the
project. These dialogs will allow you to select: processor type; float type; output file type; optimisation
settings; and map and symbol file options. You will be asked to enter source file names via the Source
file list.

Save project
This item saves the current project to a file.

Rename project...
This will allow you to specify a new name for the project. The next time the project is saved it will be
saved to the new file name. The existing project file will not be affected if it has already been saved.

Output file name ...
This command allows the user to select the name of the compiler output file. This name is automatically
setup when a project is created. For example if a project called prog1 is created and a COD file is being
generated, the output file name will be automatically set to prog1.cod.

Map file name ...
This command allows the user to enable generation of a symbol map for the current project, and specify
the name of the map. The default name of the map file is generated from the project name, e.g.
prog1.map.
HI-TECH PICC Lite compiler 83

Using HTLPIC

 3
Symbol file name ...
This command allows you to select generation of a symbol file, and specification of the symbol file
name. The default name of the symbol file will be generated from the project name, e.g. prog1.sym. The
symbol file produced is suitable for use with MPLAB.

Source file list ...
This option displays a dialog which allows a list of source files to be edited. The source files for the
project should be entered into the list, one per line. When finished, the source file list can be exited by
pressing escape, clicking the mouse on the DONE button, or clicking the mouse in the menu bar.

The source file list can contain any mix of C and assembly language source files. C source files should
have the suffix .c and assembly language files the suffix .as, so that HTLPIC can determine where the
files should be passed.

Object file list ...
This option allows any extra .obj files to be added to the project. Only enter one .obj file per line.
Operation of this dialog is the same as the source file list dialog.

This list will normally only contain one object file: the run-time start off module for the current
processor. For example, if a project is generating code for the PIC16C84, by default this list will contain
a runtime startoff module called picrt400.obj. Object files corresponding to files in the source file list
SHOULD NOT be entered here as .obj files generated from source files are automatically used. This list
should only be used for extra .obj files for which no source code is available, such as run-time startoff
code or utility functions brought in from an outside source.

If a large number of .obj files need to be linked in, they should be condensed into a single .lib file using
the LIBR utility and then accessed using the Library file list ... command.

Library file list ...
This command allows any extra object code libraries to be searched when the project is linked. This list
normally only contains the default library for the processor being used. For example, if the current
project is for a PIC16C84, this list will contain the library pic400-c.lib. If an extra library, brought in
from an external source, is required, it should be entered here.

It is a good practice to enter any non-standard libraries before the standard C libraries, in case they
reference extra standard library routines. The normal order of libraries should be user libraries then the
standard C library. Sometimes it is necessary to scan a user library more than once. In this case you
should enter the name of the library more than once.

CPP pre-defined symbols ...
This command allows any special pre-defined symbols to be defined. Each line in this list is equivalent
to a -D option to the command line compiler PCC. For example, if a CPP macro called DEBUG with
84

HTLPIC menus

 3
value 1, needs to be defined, add the line DEBUG=1 to this list. Some standard symbols will be pre-
defined in this list, these should not be deleted as some of the standard header files rely on their presence.

CPP include paths ...
This option allows extra directories to be searched by the C pre-processor when looking for header files.
When a header file enclosed in angle brackets is included, for example <stdio.h>, the compiler will
search each directory in this list until it finds the file.

Linker options ...
This command allows the options passed to the linker by HTLPIC to be modified. The default contents
of the linker command line are generated by the compiler from information selected in the Options
menu. You should only use this command if you are sure you know what you are doing!

Objtohex options ...
This command allows the options passed to objtohex by HTLPIC to be modified. Normally you will not
need to change these options as the generation of output files can be chosen in the Options menu.
However, if you want to generate one of the unusual output formats which objtohex can produce, like
COFF files, you will need to change the options using this command.

3.5.7 Run menu

The Run menu shown in Figure 3 - 10 on page 86, contains options allowing MS-DOS commands and
user programs to be executed.

DOS command ... alt-d
This option allows an MS-DOS command to be executed exactly like it had been entered at the
command.com prompt. This command could be an internal MS-DOS command like dir, or the name of
a program to be executed. If you want to escape to the MS-DOS command processor, use the DOS Shell
command below.

Warning: do not use this option to load TSR programs.

DOS Shell alt-J
This item will invoke an MS-DOS command.com shell, i.e. you will be immediately presented with a
MS-DOS prompt, unlike the DOS command item which prompts for a command. To return to HTLPIC,
type exit at the MS-DOS prompt.

Other Options
All other options in this menu are for future enhancements to the compiler.

3.5.8 Utility menu

The Utility menu (Figure 3 - 11 on page 87) contains any useful utilities which have been included in
HTLPIC.
HI-TECH PICC Lite compiler 85

Using HTLPIC

 3
String search ...
This option allows you to conduct a string search in a list of files. The option produces a dialog which
enables you to type in the string you are seeking and then select a list of files to search. You can also
select case sensitivity. It is possible to limit the search to a source file list or just the current project.

Memory usage map
This option displays a window which contains a detailed memory usage map of the last program which
was compiled.

The memory usage map window may be closed by clicking the mouse on the close box in the top left
corner of the frame, or by pressing esc while the memory map is the front most window.

Calculator
This command selects the HI-TECH Software programmer's calculator. This is a multi-display integer
calculator capable of performing calculations in bases 2 (binary), 8 (octal), 10 (decimal) and 16
(hexadecimal). The results of each calculation are displayed in all four bases simultaneously.

Operation is just like a “real” calculator - just press the buttons! If you have a mouse you can click on
the buttons on screen, or just use the keyboard. The large buttons to the right of the display allow you to
select which radix is used for numeric entry.

Figure 3 - 10 HTLPIC Run Menu
86

HTLPIC menus

 3
The calculator window can be moved at will, and thus can be left on screen while the editor is in use.
The calculator window may be closed by clicking the OFF button in the bottom right corner, by clicking
the close box in the top left corner of the frame, or by pressing esc while the calculator is the front most
window.

Ascii Table
This option selects a window which contains an ASCII look-up table. The ASCII table window contains
four buttons which allow you to close the window or select display of the table in octal, decimal or
hexadecimal.

The ASCII table window may be closed by clicking the CLOSE button in the bottom left corner, by
clicking the close box in the top left corner of the frame, or by pressing esc while the ASCII table is the
front most window.

Define user commands...
In the Utility menu are four user-definable commands. This item will invoke a dialog box which will
allow you to define those commands. By default the commands are dimmed (not selectable) but will be
enabled when a command is defined. Each command is in the form of a DOS command, with macro
substitutions available. The macros available are listed in Table 3 - 9 on page 88. Each user-defined
command has a hot key associated. They are shift F7 through shift F10, for commands 1 to 4. When a

Figure 3 - 11 HTLPIC Utility Menu
HI-TECH PICC Lite compiler 87

Using HTLPIC

 3
user command is executed, the current edit file, if changed, will be saved to a temporary file, and the
$(EDIT) macro will reflect the saved temp file name, rather than the original name. On return, if the
temp file has changed it will be reloaded into the editor. This allows an external editor to be readily
integrated into HTLPIC.

3.5.9 Help menu

The Help menu (Figure 3 - 12 on page 89) contains items allowing you to obtain help about any topics
listed.

On startup, HTLPIC searches the current directory and the help directory for tbl files, which are added
to the Help menu. The path of the help directory can be specified by the environment variable
HT_PICL_HLP. If this is not set, it will be derived from the full path name used when HTLPIC was
invoked. If the help directory cannot be located, none of the standard help entries will be available.

HI-TECH Software
This includes information on contacting HI-TECH Software and the licence agreement.

HTLPIC
This option produces a window showing all the topics for which help is available. Topics include Chip
types, Compiler optimizations, Editor Searching, Floating point sizes, String search and User defined
commands.

C Library Reference
This command selects an on-line manual for the standard ANSI C library. You will be presented with a
window containing the index for the manual. Topics can be selected by double clicking the mouse on
them, or by moving the cursor with the arrow keys and pressing return.

Table 3 - 9 Macros usable in user commands

Macro name Meaning
$(LIB) Expands to the name of the system library file directory; eg c:\ht-picl\lib\
$(CWD) The current working directory
$(INC) The name of the system include directory
$(EDIT) The name of the file currently loaded into the editor. If the current file has been

modified, this will be replaced by the name of the auto saved temporary file. On
return this will be reloaded if it has changed.

$(OUTFILE) The name of the current output file, i.e. the executable file.
$(PROJ) The base name of the current project, eg if the current project file is audio.prj, this

macro will expand to audio with no dot or file type.
88

HTLPIC menus

 3
Once a topic has been selected, the contents of the window will change to an entry for that topic in a
separate window. You can move around within the reference using the keypad cursor keys and the index
can be re-entered using the INDEX button at the bottom of the window.

If you have a mouse, you can follow hypertext links by double clicking the mouse on any word. For
example, if you are in the tan entry and double click on the reference to asin, you will be taken to the
entry for asin.

This window can be re-sized and moved at will, and thus can be left on screen while the editor is in use.

Editor Keys
This option displays a list editor commands and the corresponding keys used to activate that command.

Technical Support
This option displays a list of dealers and their phone numbers for you to use should you require technical
support.

Figure 3 - 12 HTLPIC Help Menu
HI-TECH PICC Lite compiler 89

Using HTLPIC

 3
PICL Compiler Options
This option displays a window showing all the PICL compiler options. They are displayed in a table
showing the option and its meaning. You can scroll through the table using the normal scroll keys or the
mouse.

Release notes
This option displays the release notes for your program. You can scroll through the window using the
normal scrolling keys or the mouse.
90

 4
Command Line Compiler Driver

PICL is invoked from the command line to compile and/or link C programs. If you prefer to use an
integrated environment then see the Using HTLPIC chapter. PICL has the following basic command
format:

picl [options] files [libraries]

It is conventional to supply the options (identified by a leading dash ‘-’) before the filenames, but in
fact this is not essential.

The options are discussed below. The files may be a mixture of source files (C or assembler) and object
files. The order of the files is not important, except that it will affect the order in which code or data
appears in memory. The libraries are a list of library names, or -L options (see page 100). Source files,
object files and library files are distinguished by PICL solely by the file type or extension. Recognized
file types are listed in Table 4 - 1. This means, for example, that an assembler file must always have a
file type of .as (alphabetic case is not important).

PICL will check each file argument and perform appropriate actions. C files will be compiled; assembler
files will be assembled. At the end, unless suppressed by one of the options discussed later, all object
files resulting from a compilation or assembly, or listed explicitly, will be linked with any specified
libraries. Functions in libraries will be linked only if referenced.

Invoking PICL with only object files as arguments (i.e. no source files) will mean only the link stage is
performed. It is typical in Makefiles to use PICL with a -C option to compile several source files to
object files, then to create the final program by invoking PICL with only object files and libraries (and
appropriate options).

4.1 Long Command Lines
The PICL driver is a 32-bit Windows application, thus it is able to process command lines exceeding 128
characters in length. The driver may be called from within a DOS batch file or passed options via a

Table 4 - 1 PICL File Types

File Type Meaning
.c C source file
.as Assembler source file
.obj Object code file
.lib Object library file
HI-TECH PICC Lite compiler 91

Command Line Compiler Driver

 4
command file. When using batch files, the command line to PICL must be contained on one line. Driver
options may be spread over multiple lines in a command file by using a space character followed by a
backslash “\” followed by a return to split the lines. For example a command file may contain:

-V -O -12F675 -UBROF -D32 \
file1.obj file2.obj mylib.lib

If this was in the file xyz.cmd then PICL would be invoked as:

PICL < xyz.cmd

Since no command line arguments were supplied, PICL will read xyz.cmd for its command line.

The command file may also be read by using the @ symbol. For example:

PICL @xyz.cmd

4.2 Default Libraries
PICL will search the appropriate standard C library by default for symbol definitions. This will always
be done last, after any user-specified libraries. The particular library used will be dependent on the
processor selected.

The standard library contains a version of printf() that supports only integer length values. If you
want to print long values with printf(), or sprintf() or related functions, you must specify a -Ll
option. This will search the library containing the long version of printf(). For floating-point and long
printf() support, use the -Lf option which will search the library containing the floating-point
version of printf(). You do not need the -Ll option if you have specified the -Lf option.

4.3 Standard Run-Time Code
PICL will also automatically provide the standard run-time module appropriate. If you require any
special powerup initialization, rather than replace or modify the standard run-time module, you should
use the powerup routine feature (see page 144). If you don’t want to use the included runtime startup
code at all, then you can disable it with the -NORT option. See 4.4.27 on page 102 for further
information.

4.4 PICL Compiler Options
The compiler is configured primarily for generation of ROM code. PICL recognizes the compiler
options listed in Table 4 - 2 on page 93. The PICL command also allows access to a number of advanced
compiler features which are not available within the HTLPIC integrated development environment.
92

PICL Compiler Options

 4
Table 4 - 2 PICL Options

Option Meaning
-processor Define the processor
-Aspec Specify offset for ROM
-A-option Specify -option to be passed directly to the assembler
-AAHEX Generate an American Automation symbolic HEX file
-ASMLIST Generate assembler .LST file for each compilation
-BIN Generate a Binary output file
-C Compile to object files only
-CKfile Make OBJTOHEX use a checksum file
-CRfile Generate cross-reference listing
-D24 Use truncated 24-bit floating point format for doubles
-D32 Use IEEE754 32-bit floating point format for doubles
-Dmacro Define pre-processor macro
-E Define format for compiler errors
-Efile Redirect compiler errors to a file
-E+file Append errors to a file
-FAKELOCAL Produce MPLAB-specific debug information
-Gfile Generate enhanced source level symbol table
-HELP Print summary of options
-ICD Compile code for MPLAB-ICD
-Ipath Specify a directory pathname for include files
-INTEL Generate an Intel HEX format output file (default)
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-MOT Generate a Motorola S1/S9 HEX format output file
-MPLAB Specify compilation and debugging under MPLAB IDE
-Nsize Specify identifier length
-NORT Do not link standard runtime module
-NO_STRING_PACK Disables string packing optimizations
-O Enable post-pass optimization
-Ofile Specify output filename
-P Preprocess assembler files
-PRE Produce preprocessed source files
-PROTO Generate function prototype information
-PSECTMAP Display complete memory segment usage after linking
-Q Specify quiet mode
-RESRAMranges Reserve the specified RAM address ranges.
HI-TECH PICC Lite compiler 93

Command Line Compiler Driver

 4
 4.4.1 -processor: Define processor

This option defines the processor which is being used. Generally all 12, 14, 16 and 17 series Microchip
PIC processors are supported, but for a complete current list see the HI-TECH web site
(www.htsoft.com). You can also add your own processors to the compiler. For more information about
this, see Processor Support on page 109.

4.4.2 -Aspec: Specify offset for ROM

The -A option is used to specify a base address for the ROM image. This option may be required with
debugging tools that expect the ROM image to begin at an address other than zero. This option effects
all ROM-based psects including interrupt vectors and constant data as well as code.

4.4.3 -A-option: Specify Extra Assembler Option

The -A option can also be used to specify an extra “-” option which will be passed directly to the
assembler by PICL. If -A is followed immediately by any text starting with a “-” character, the text will
be passed directly to the assembler without being interpreted by PICL. For example, if the option -A-H
is specified, the -H option will be passed on to the assembler when it is invoked which will display
constant values as hexadecimal values in the assembler output.

4.4.4 -AAHEX: Generate American Automation Symbolic Hex

The -AAHEX option directs PICL to generate an American Automation symbolic format HEX file,
producing a file with the .hex extension. This option has no effect if used with a .bin file. The
American Automation hex format is an enhanced Motorola S-Record format which includes symbol
records at the start of the file. This option should be used if producing code which is to be debugged with
an American Automation in-circuit emulator.

-RESROMranges Reserve the specified ROM address ranges.
-S Compile to assembler source files only
-SIGNED_CHAR Make the default char signed.
-STRICT Enable strict ANSI keyword conformance
-TEK Generate a Tektronix HEX format output file
-Usymbol Undefine a predefined pre-processor symbol
-UBROF Generate an UBROF format output file
-V Verbose: display compiler pass command lines
-Wlevel Set compiler warning level
-X Eliminate local symbols from symbol table
-Zg[level] Enable global optimization in the code generator

Table 4 - 2 PICL Options

Option Meaning
94

PICL Compiler Options

 4
4.4.5 -ASMLIST: Generate Assembler .LST Files

The -ASMLIST option tells PICL to generate an assembler .LST file for each compilation. The list file
shows both the original C code, and the generated assembler code and the corresponding binary code.
The listing file will have the same name as the source file, and a file type (extension) of .lst.

4.4.6 -BIN: Generate Binary Output File

The -BIN option tells PICL to generate a Binary image output file. The output file will be given type
.bin. Binary output may also be selected by specifying an output file of type .bin using the -Ofile
option.

4.4.7 -C: Compile to Object File

The -C option is used to halt compilation after generating an object file. This option is frequently used
when compiling multiple source files using a “make” utility. If multiple source files are specified to the
compiler each will be compiled to a separate .obj file. To compile three source files main.c,
module1.c and asmcode.as to object files you could use the command:

PICL -16C84 -O -Zg -C main.c module1.c asmcode.as

The compiler will produce three object files main.obj, module1.obj and asmcode.obj which could
then be linked to produce a Motorola HEX file using the command:

PICL -16C84 main.obj module1.obj asmcode.obj

The compiler will accept any combination of .c, .as and .obj files on the command line. Assembler
source files will be passed directly to the assembler and object files will not be used until the linker is
invoked. Unless the -Ofile option is used to specify an output file name and type the final output will
be a Motorola hex file with the same “base name” as the first source or object file, the example above
would produce a file called main.hex.

4.4.8 -CKfile: Generate Check Sum

This option causes OBJTOHEX to use file for checksum specifications. See “Objtohex Options” on
page 196. for further details.

4.4.9 -CRfile: Generate Cross Reference Listing

The -CR option will produce a cross reference listing. If the file argument is omitted, the “raw” cross
reference information will be left in a temporary file, leaving the user to run the CREF utility. If a
filename is supplied, for example -CRtest.crf, PICL will invoke CREF to process the cross reference
information into the listing file, in this case TEST.CRF. If multiple source files are to be included in the
cross reference listing, all must be compiled and linked with the one PICL command. For example, to
HI-TECH PICC Lite compiler 95

Command Line Compiler Driver

 4
generate a cross reference listing which includes the source modules main.c, module1.c and
nvram.c, compile and link using the command:

PICL -16C84 -CRmain.crf main.c module1.c nvram.c

4.4.10 -D24: Use 24-bit Doubles

This option is the default, causing the use of truncated 24-bit floating point format for doubles. See
Floating Point on page 119 for more details.

4.4.11 -D32: Use 32-bit Doubles

This tells the compiler to use the IEEE754 32-bit floating point format for doubles. See Floating Point
on page 119 for more details.

4.4.12 -Dmacro: Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as if it had been
defined using a #define directive in the source code. This option may take one of two forms, -Dmacro
which is equivalent to:

#define macro 1

or -Dmacro=text which is equivalent to:

#define macro text

Thus, the command:

PICL -16C84 -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the directives:

#define debug 1

#define buffers 10

4.4.13 -E: Define Format for Compiler Errors

If the -E option is not used, the default behaviour is to display compiler errors in a “human readable”
format line with a caret “^” and error message pointing out the offending characters in the source line,
for example:

x.c: main()
 4: PORT_A = xFF;
 ^ undefined identifier: xFF
96

PICL Compiler Options

 4
The standard format is perfectly acceptable to a person reading the error output but is not usable with
editors which support compiler error handling.

4.4.13.1 Using the -E Option
Using the -E option instructs the compiler to generate error messages in a format which is acceptable to
some text editors.

If the same source code as used in the example above were compiled using the -E option, the error
output would be:

x.c 4 9: undefined identifier: xFF

indicating that the error occurred in file x.c at line 4, offset 9 characters into the statement. The second
numeric value, the column number, is relative to the left-most non-space character on the source line. If
an extra space or tab character were inserted at the start of the source line, the compiler would still report
an error at line 4, column 9.

4.4.13.2 Modifying the Standard -E Format
If the -E option does not meet your editor’s requirement, you can redefine its format by setting two
environment variables: HTC_ERR_FORMAT and HTC_WARN_FORMAT. These environment variables are in
the form of a printf-style string in which you can use the specifiers shown in Table 4 - 3.

The column number is relative to the left-most non-space character on the source line. Here is an
example of setting the environment variables:

set HTC_WARN_FORMAT=WARNING: file %f; line %l; column %c; %s
set HTC_ERR_FORMAT=ERROR: file %f; line %l; column %c; %s

Using the previous source code, the output from the compiler when using the above environment
variables would be:

ERROR: file x.c; line 4; column 9; undefined identifier: xFF

Table 4 - 3 Error Format Specifiers

Specifier Expands To
%f Filename
%l Line number
%c Column number
%s Error string
HI-TECH PICC Lite compiler 97

Command Line Compiler Driver

 4
Remember that if these environment variables are set in a batch file, you must prepend the specifiers
with an additional percent character to stop the specifiers being interpreted immediately by DOS, e.g.
%%f.

4.4.13.3 Redirecting Errors to a File
Error output, either in standard or -E format, can be redirected into files using UNIX or MS-DOS style
standard output redirection. The error from the example above could have been redirected into a file
called errlist using the command:

PICL -16C84 -E x.c > errlist

Compiler errors can also be appended onto existing files using the redirect and append syntax. If the
error file specified does not exist it will be created. To append compiler errors onto a file use a command
like:

PICL -16C84 -E x.c >> errlist

4.4.14 -Efile: Redirect Compiler Errors to a File

Some editors do not allow the standard command line redirection facilities to be used when invoking the
compiler. To work with these editors, PICL allows the error listing file name to be specified as part of
the -E option. Error files generated using this option will always be in -E format. For example, to
compile x.c and redirect all errors to x.err, use the command:

PICL -16C84 -Ex.err x.c

The -E option also allows errors to be appended to an existing file by specifying a “+” at the start of the
error file name, for example:

PICL -16C84 -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use the
-E option to create the file then use -E+ when compiling all the other source files. For example, to
compile a number of files with all errors combined into a file called project.err, you could use the
-E option as follows:

PICL -16C84 -Eproject.err -O -Zg -C main.c
PICL -16C84 -E+project.err -O -Zg -C part1.c
PICL -16C84 -E+project.err -C asmcode.as

The file project.err will contain any errors from main.c, followed by the errors from part1.c and
then asmcode.as, for example:
98

PICL Compiler Options

 4
main.c 11 22:) expected
main.c 63 0: ; expected
part1.c 5 0: type redeclared
part1.c 5 0: argument list conflicts with prototype
asmcode.as 14 0: Syntax error
asmcode.as 355 0: Undefined symbol _putint

4.4.15 -FAKELOCAL

This option should be used in conjunction with the -G option to produce debug information that is
specific to Microchip’s MPLAB. It will allow the user to debug using variables local to a function, e.g.
in watch windows. The debug information associated with source-level single stepping is also modified
so that a better correlation between the source and instructions in the program memory window is
obtained. See also Section 5.37 on page 150.

4.4.16 -Gfile: Generate Source Level Symbol File

-G generates a source level symbol file for use with HI-TECH Software debuggers and simulators such
as Lucifer. If no filename is given, the symbol file will have the same “base name” as the first source or
object file, and an extension of .SYM. For example, -GTEST.SYM generates a symbol file called
TEST.SYM. Symbol files generated using the -G option include source level information for use with
source level debuggers.

Note that all source files for which source level debugging is required should be compiled with the -G
option. The option is also required at the link stage, if this is performed separately. For example:

PICL -16C84 -G -C test.c
PICL -16C84 -C module1.c
PICL -16C84 -Gtest.sym test.obj module1.obj

will include source level debugging information for test.c only because module1.c was not
compiled with the -G option.

4.4.17 -HELP: Display Help

When used with no other options present on the command line, the -HELP option displays information
on the PICL options.

4.4.18 -ICD

This option can be used to indicate that the output code is to be downloaded to the MPLAB In-Circuit
Debugger. It will make appropriate adjustments to the linker options required by the ICD. When used,
this option defines a macro called MPLAB_ICD.
HI-TECH PICC Lite compiler 99

Command Line Compiler Driver

 4
4.4.19 -Ipath: Include Search Path

Use -I to specify an additional directory to use when searching for header files which have been
included using the #include directive. The -I option can be used more than once if multiple directories
are to be searched. The default include directory containing all standard header files will still be
searched, after any user specified directories have been searched. For example:

PICL -16C84 -C -Ic:\include -Id:\myapp\include test.c

will search the directories c:\include and d:\myapp\include for any header files included using
angle brackets.

4.4.20 -INTEL: Generate INTEL Hex File

The -INTEL option directs PICL to generate an Intel HEX file if producing a file with .HEX extension.
This option has no effect if used with a .BIN file.

4.4.21 -Llibrary: Scan Library

The -L option is used to specify additional libraries which are to be scanned by the linker. Libraries
specified using the -L option are scanned before the standard C library, allowing additional versions of
standard library functions to be accessed. For example when compiling for the PIC16C65 processor, the
floating point version of printf() can be linked by searching the library PIC411-F.LIB using the
option -LF.

The argument to -L is a library keyword to which the prefix PIC; numbers representing the processor
range, number of ROM banks and the number of RAM banks; and suffix .LIB are added. Thus the
option -LL will, for example, scan the library PIC411-L.LIB and the option -LXX will scan a library
called PIC411-XX.LIB. All libraries must be located in the LIB subdirectory of the compiler
installation directory.

If you wish the linker to scan libraries whose names do not follow this naming convention or whose
locations are not in the LIB subdirectory, include the libraries’ names on the command line along with
your source files. Alternatively, the additional libraries can be specified in the HTLPIC library file list
menu, or the linker may be invoked directly.

4.4.21.1 Printf with Additional Support for Longs and Floats
For Midrange and High-End processors, you can use a version of printf() and related functions
which, in addition to supporting the printing of integers, can support printing of long integers. Another
version supports integers, long integers and floats. For complete information on printf(), see
page 330.

To use the version of printf() which has additional support for longs, you must include a
supplementary library by using the following option:
100

PICL Compiler Options

 4
-Ll

To use the version of printf which has additional support for longs and floats, use the option:

-Lf

In the above options, l and f are merely specifying the Library Type as described in the section Standard
Libraries on page 109.

4.4.22 -L-option: Specify Extra Linker Option

The -L option can also be used to specify an extra “-” option which will be passed directly to the linker
by PICL. If -L is followed immediately by any text starting with a “-” character, the text will be passed
directly to the linker without being interpreted by PICL. For example, if the option -L-FOO is specified,
the -FOO option will be passed on to the linker when it is invoked. It is important to note, there is no
space between -L and -FOO. The -L option is especially useful when linking code which contains extra
program sections (or psects, as may be the case if the program contains assembler code or C code which
makes use of the #pragma psect directive. If the -L option did not exist, it would be necessary to
invoke the linker manually or use an HTLPIC option to link code which uses extra psects. The -L option
makes it possible to specify any extra psects simply by using an extra linker -P option. To give a
practical example, suppose your code contains variables which have been mapped into a special RAM
area using an extra psect called xtraram. In order to link this new psect at the appropriate address all
you need to do is pass an extra linker -P option using the -L option. For example, if the special RAM
area (xtraram psect) were to reside at address 50h, you could use the PICL option -L-
Pxtreram=50h as follows:

PICL -16C84 -L-Pxtraram=50h prog.c xram.c

One commonly used linker option is -N, which sorts the symbol table in the map file in address rather
than name order. This is passed to PICL as -L-N.

4.4.23 -Mfile: Generate Map File

The -M option is used to request the generation of a map file. If no filename is specified, the map
information is displayed on the screen, otherwise the filename specified to -M will be used.

4.4.24 -MOT: Generate Motorola S-Record HEX File

The -MOT option directs PICL to generate a Motorola S-Record HEX file if producing a file with .HEX
extension. This option has no effect if used with a .BIN file.

4.4.25 -MPLAB: Compile and Debug using MPLAB IDE

The -MPLAB option informs the HI-TECH C that both compilation and subsequent debugging will be
performed from within the Microchip MPLAB IDE. This option turns on source level debugging (-G),
HI-TECH PICC Lite compiler 101

Command Line Compiler Driver

 4
turns on the -FAKELOCAL option to allow enhanced source and variable tracking, and adjusts the
compiler's error message format (-E) to be that required by the MPLAB IDE.

If compilation is performed under a separate make facility, but debugging is performed under the
MPLAB IDE, then the -G, -E and -FAKELOCAL options can be used separately.

4.4.26 -Nsize: Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes are
from 32 to 255. The option has no effect for all other values.

4.4.27 -NORT: Do Not Link Standard Runtime Module

Using this option will not link in the standard runtime startup module. The user should then supply their
own version of the runtime startup module in the list of input files on the command line. Even if the
required startup module does not contain executable code, it will almost certainly require symbol and
psect definitions for successful compilation, so this module cannot simply be omitted completely. The
source for the standard runtime module is supplied in the SOURCES directory of your distribution and
this should be used as the basis for your own runtime module.

4.4.28 -NO_STRING_PACK: Disable string packing optimizations

This option will disable string packing optimizations. Use this option if the emulator or debugging
environment you are using does not support processors which can read their own program memory.

4.4.29 -O: Invoke Optimizer

-O invokes the post-pass optimizer after the code generation pass.

4.4.30 -Ofile: Specify Output File

This option allows the name and type of the output file to be specified to the compiler. If no -O option
is specified, the output file will be named after the first source or object file. You can use the -O option
to specify an output file of type HEX, BIN or UBR, containing HEX, Binary or UBROF respectively.
For example:

PICL -16C84 -Otest.bin prog1.c part2.c

will produce a binary file named test.bin.

4.4.31 -P: Pre-process Assembly Files

-P causes the assembler files to be pre-processed before they are assembled.
102

PICL Compiler Options

 4
4.4.32 -PRE: Produce Pre-processed Source Code

-PRE is used to generate pre-processed C source files with an extension .PRE. It may be useful to ensure
that macros expand to what you think they should. Use of this option can also create C source files which
do not require any separate header files. This is useful when sending files for technical support.

4.4.33 -PROTO: Generate Prototypes

-PROTO is used to generate .PRO files containing both ANSI and K&R style function declarations for
all functions within the specified source files. Each .PRO file produced will have the same base name as
the corresponding source file. Prototype files contain both ANSI C style prototypes and old style C
function declarations within conditional compilation blocks.

The extern declarations from each .PRO file should be edited into a global header file which is included
in all the source files comprising a project. The .PRO files may also contain static declarations for
functions which are local to a source file. These static declarations should be edited into the start of the
source file. To demonstrate the operation of the -PROTO option, enter the following source code as file
test.c:

#include <stdio.h>
add(arg1, arg2)
int * arg1;
int * arg2;
{
 return *arg1 + *arg2;
}

void printlist(int * list, int count)
{
 while (count--)
 printf("%d ", *list++);
 putchar(’\n’);
}

If compiled with the command PICL -16C84 -PROTO test.c, PICL will produce test.pro
containing the following declarations which may then be edited as necessary:

/* Prototypes from test.c */
/* extern functions - include these in a header file */
#if PROTOTYPES
extern int add(int *, int *);
extern void printlist(int *, int);
HI-TECH PICC Lite compiler 103

Command Line Compiler Driver

 4
#else /* PROTOTYPES */
extern int add();
extern void printlist();
#endif /* PROTOTYPES */

4.4.34 -PSECTMAP: Display Complete Memory Usage

The -PSECTMAP option is used to display a complete memory and psect (program section) dump after
linking the user code. The information provided by this option is more detailed than the standard
memory usage map which is normally printed after linking. The -PSECTMAP option causes the compiler
to print a listing of every compiler and user generated psect, followed by the standard memory usage
map. For example:

Psect Usage Map:

Psect	Contents	Memory Range
powerup | Power on reset code | $0000 - $0003
init | Initialization code | $0004 - $0007
end_init | Initialization code | $0008 - $000B
clrtext | Memory clearing code | $000C - $0012
text | Program and library code | $0745 - $074C
text1 | Program and library code | $074D - $075D
ftext | Arithmetic routine code | $075E - $0769
float_te | Arithmetic routine code | $076A - $07FF
rbss_0 | Bank 0 RAM variables | $0020 - $0022
temp | Temporary RAM data | $0070 - $007B

Memory Usage Map:

Program ROM $0000 - $0012 $0013 (19) words
Program ROM $0745 - $07FF $00BB (187) words
 $00CE (206) words total Program ROM

Bank 0 RAM $0020 - $0022 $0003 (3) bytes
Bank 0 RAM $0070 - $007B $000C (12) bytes
 $000F (15) bytes total Bank 0 RAM

4.4.35 -q: Quiet Mode

If used, this option must be the first option. It places the compiler in quiet mode which suppresses the
HI-TECH Software copyright notice from being output.
104

PICL Compiler Options

 4
4.4.36 -RESRAMranges[,ranges]

The -RESRAM option is used to reserve a particular section of RAM space. The address ranges must be
specified in HEX. The syntax for this option is a comma separated list of address ranges. For example:

-RESRAM20-40

This will reserve the RAM addresse range from 0x20 to 0x40.

4.4.37 -RESROMranges[,ranges]

The -RESROM option is used to reserve a particular section of ROM space. The address ranges must be
specified in HEX. The syntax for this option is a comma separated list of address ranges. For example:

-RESROM1000-10FF,2000-20FF

This will reseve the ROM address ranges 0x1000 to 0x10FF and 0x2000 to 0x20FF.

4.4.38 -S: Compile to Assembler Code

The -S option stops compilation after generating an assembler source file. An assembler file will be
generated for each C source file passed on the command line. The command:

PICL -16C84 -O -Zg -S test.c

will produce an assembler source file called test.as which contains the code generated from test.c.
The optimization options -O and -Zg can be used with -S, making it possible to examine the compiler
output for any given set of options. This option is particularly useful for checking function calling
conventions and “signature” values when attempting to write external assembly language routines.

4.4.39 -SIGNED_CHAR: Make Char Type Signed

Unless this option is used, the default behaviour of the compiler is to make all character values and
variables unsigned char unless explicitly declared or cast to signed char. This option will make
the default char type signed char. Any unsigned char will have to be explicitly declared unsigned
char.

The range of signed char is -128 to +127 and the range of unsigned char is 0 to 255

4.4.40 -STRICT: Strict ANSI Conformance

The -STRICT option is used to enable strict ANSI conformance of all special keywords. HI-TECH C
supports various special keywords (for example bank1 type qualifier). If the -STRICT option is used,
these keywords are changed to include a double underscore at the beginning (e.g. __bank1) so as to
strictly conform to the ANSI standard. Be warned that use of this option may cause problems with some
standard header files (e.g. intrpt.h).
HI-TECH PICC Lite compiler 105

Command Line Compiler Driver

 4
4.4.41 -TEK: Generate Tektronix HEX File

The -TEK option tells the compiler to generate a Tektronix format HEX file if producing a file with .HEX
extension. This option has no effect if used with a .BIN file.

4.4.42 -Umacro: Undefine a Macro

-U, the inverse of the -D option, is used to undefine predefined macros. This option takes the form
-Umacro. For example, to remove the pre-defined macro debug use the option -Udebug.

4.4.43 -UBROF: Generate UBROF Format Output File

The -UBROF option tells the compiler to generate a UBROF format output file suitable for use with
certain in-circuit emulators. The output file will be given an extension .UBR. UBROF output may also
be selected by specifying an output file of type .UBR using the -O option. This option has no effect if
used with a .BIN file.

4.4.44 -V: Verbose Compile

-V is the “verbose” option. The compiler will display the command lines used to invoke each of the
compiler passes. This option may be useful for determining the exact linker options which should be
used if you want to directly invoke the HLINK command.

4.4.45 -Wlevel: Set Warning Level

-W is used to set the compiler warning level. Allowable warning levels range from -9 to 9. The warning
level determines how picky the compiler is about dubious type conversions and constructs. The default
warning level -W0 will allow all normal warning messages. Warning level -W1 will suppress the
message Func() declared implicit int. -W3 is recommended for compiling code originally
written with other, less strict, compilers. -W9 will suppress all warning messages. Negative warning
levels -W-1, -W-2 and -W-3 enable special warning messages including compile-time checking of
arguments to printf() against the format string specified.

4.4.46 -X: Strip Local Symbols

The option -X strips local symbols from any files compiled, assembled or linked. Only global symbols
will remain in any object files or symbol files produced.

4.4.47 -Zg[level]: Global Optimization

The -Zg option invokes global optimization during the code generation pass. This can result in
significant reductions to code size and internal RAM usage. This optimizer is less critical than the post-
pass optimizer, but can still significantly reduce the code size.
106

PICL Compiler Options

 4
Global optimization attempts to Optimize register usage on a function-by-function basis. It also takes
advantage of constant propagation in code to avoid un-necessary accesses to memory.

The default level for this option is 1 (the least optimization). The level can be set anywhere from 1 to 9
(the most optimization). The number indicates how hard the optimizer tries to reduce code size. For
PICL, there is usually little advantage in using levels above 3.
HI-TECH PICC Lite compiler 107

Command Line Compiler Driver

 4
108

 5
Features and Runtime Environment

PICC Lite supports a number of special features and extensions to the C language which are designed
to ease the task of producing ROM-based applications. This chapter documents the compiler options and
special features which are available. After reading and understanding this manual you should know how
to:

! configure the console I/O routines so that you can use <stdio.h> routines on your hardware.

! set up the interrupt handler using only C code.

! program I/O devices using only C code.

! interface between C and assembler code using inline or external assembly language routines.

5.1 Divergence from the ANSI C Standard
PICC Lite diverges from the ANSI C standard in one area: function recursion.

Due to the PIC’s hardware limitations of no stack and limited memory, function recursion is
unsupported.

5.2 Processor Support
PICC Lite supports a wide range of processors. Additional processors may be added by editing
piclite.ini in the LIB directory. This file is divided into baseline, midrange and high-end sections,
but user-defined processors should be placed at the end of the file. The header of the file explains how
to specify a processor.

5.3 Standard Libraries
PICC Lite includes a number of standard libraries, each with the range of functions described in the
Library Functions chapter.

Figure 5 - 1 on page 110 illustrates the naming convention used for the standard libraries. The meaning
of each field is described here, where:

! Processor Type is always pcl.

! Processor Range is 2 for the Baseline range, 4 for the Midrange and 7 for the High-End range
of PIC microprocessors.

! # of ROM Banks is 2n.
HI-TECH PICC Lite compiler 109

Features and Runtime Environment

 5
! # of RAM Banks is 2m. For Midrange processors that have common memory, a letter is used
rather than a number. So for example where ‘0’, ‘1’ or ‘2’ might be used for processors with
no common memory, ‘a’, ‘b’, ‘c’ would be used for processors that do have common memory.

! Double Type is - for 24-bit doubles, and d for 32-bit doubles.

! Library Type is c for standard library, l for the library which contains only printf-related
functions with additional support for longs, and f for the library which contains only printf-
related functions with additional support for longs and floats.

5.3.1 Limitations of Printf

The printf() function is provided but some features have been removed. For more details on this
function, see the documentation on page 330.

5.4 Output File Formats
The compiler is able to directly produce a number of the output file formats which are used by common
PROM programmers and in-circuit emulators.

If you are using the HTLPIC integrated environment compiler driver you can select Motorola HEX,
Intel HEX, Binary, UBROF, Tektronix HEX, American Automation symbolic HEX, Bytecraft COD, or
Library file using the Output file type menu item in the “Options” menu.

The default behaviour of the PICL command is to produce Bytecraft COD and Intel HEX output. If no
output file name or type is specified, PICL will produce a Bytecraft COD and Intel HEX file with the
same base name as the first source or object file. Table 5 - 1 on page 111 shows the output format options
available with PICL. With any of the output format options, the base name of the output file will be the
same as the first source or object file passed to PICL. The File Type column lists the filename extension
which will be used for the output file.

In addition to the options shown, the -O option may be used to request generation of binary or UBROF
files. If you use the -O option to specify an output file name with a .bin type, for example -Otest.bin,

Figure 5 - 1 PIC Standard Library Naming Convention

.LIB

Library Type (c,l,f)

m (Represents # of RAM banks)

Processor Type (pcl)
Processor Range (2, 4, 7)

n (Represents # of ROM banks)
Double Type (-, d)
110

Symbol Files

 5
PICL will produce a binary file. Likewise, if you need to produce UBROF files, you can use the -O
option to specify an output file with type .ubr, for example -Otest.ubr.

5.5 Symbol Files
The PICL -G option tell the compiler to produce a symbol file which can be used by debuggers and
simulators to perform symbolic and source level debugging. This option produces symbol files which
contain assembler level information and C source level information. If no symbol file name is specified,
by default a file called file.sym will be produced, where file is the basename of the first source file
on the command line. For example, to produce a symbol file called test.sym which includes C source
level information:

PICL -16C84 -Gtest.sym test.c

The symbol files produced by these options may be used with in-circuit emulators.

5.6 Predefined Macros
The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional compilation
based on chip type, memory model etc. The symbols listed in Table 5 - 2 show the more common
symbols defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise stated.

5.7 Header File Definitions
The purpose of the header file is to define various symbols such as SFRs and configuration bits. Header
files can also describe useful identities concerning EEPROM and flash memory.

SFR definitions create C variables that are available to the user and are used to access the special
function registers that reside within the selected processor. The name and address conventions used

Table 5 - 1 Output File Formats

Format Name Description PICL Option File Type
Motorola HEX S1/S9 type hex file -MOT .HEX
Intel HEX Intel style hex records (default) -INTEL .HEX
Binary Simple binary image -BIN .BIN
UBROF “Universal Binary Image Relocatable Format” -UBROF .UBR
Tektronix HEX Tektronix style hex records -TEK .HEX
American
Automation HEX

Hex format with symbols for American
Automation emulators

-AAHEX .HEX

Bytecraft .COD Bytecraft code format (default) n/a (default) .COD
Library HI-TECH library file n/a .LIB
HI-TECH PICC Lite compiler 111

Features and Runtime Environment

 5
when defining the SFRs for any particular chip are identical to that used by Microchip in the
corresponding datasheet.

Configuration bits are used to select various operational features, properties or modes that are available
to a particular device. Some of the control properties that may be selected using the configurations bits
include code protection, watchdog settings and oscillator selection. For more information about the
configurations bits, See “Configuration Fuses” on page 113.

EEPROM and flash memory macros are defined for convenience and are available for chips that have
EEPROM or flash memory on-board. The predefined EEPROM and flash memory macros can be used
in the following mannor:

To write a byte-size value to an address in EEPROM memory:

EEPROM_WRITE(address,value);

To read a byte of data from an address in EEPROM memory, and store it in a variable:

variable=EEPROM_READ(address);

Table 5 - 2 Predefined CPP Symbols

Symbol When set Usage
HI_TECH_C Always To indicate that the compiler in use is HI-TECH C.
_HTC_VER_
MAJOR_

Always To indicate the integer component of the compiler’s ver-
sion number.

_HTC_VER_
MINOR_

Always To indicate the decimal component of the compiler’s ver-
sion number.

_HTC_VER_P
ATCH_

Always To indicate the patch level of the compiler’s version
number.

MPC Always To indicate the code is compiled for the Microchip PIC
family.

_PIC14 If 14-bit device To indicate that this a Midrange PIC device.
COMMON If common

RAM present
To indicate the presence of a common RAM area.

BANKBITS To 0, 1 or 2 Assigned 0, 1 or 2 to indicate 1, 2 or 4 available banks of
RAM.

GPRBITS To 0, 1 or 2 Assigned 0, 1 or 2 to indicate 1, 2 or 4 available banks of
general purpose RAM.

MPLAB_ICD If using ICD To indicate that code is being generated for the MPLAB
In-Circuit Debugger
112

Configuration Fuses

 5
For convenience, EEPROM_SIZE predefines the total size of data EEPROM available on chip.

To write a byte-size value to an address in flash memory:

FLASH_WRITE(address,value);

To read a byte of data from an address in flash memory, and store in in a variable:

variable=FLASH_READ(address);

5.8 Configuration Fuses
The PIC processor’s configuration fuses may be set using the __CONFIG macro as follows:

#include <pic.h>
__CONFIG(x);

where x is the word that is to be the configuration word. Special named quantities are defined in the
header file appropriate for the processor you are using to help you enable the required features. Here is
an example for a PIC16C5x:

__CONFIG(WDTDIS & XT & UNPROTECT);

This will disable the watchdog timer, specify an XT crystal and leave the code space unprotected. Check
the appropriate header file and ensure that all the configuration bits are correctly specified in the
__CONFIG macro for your application before programming the device.

Note that the individual selections are ANDed together. Any bits which are not selected in these macros
will remain unprogrammed. You should ensure that you have specified all bits correctly to ensure proper
operation of the part when programmed. Consult your PIC datasheet for more details.

The __CONFIG macro does not produce executable code and should be placed outside function
definitions.

5.9 ID Locations
Some PIC devices have locations outside the addressable memory area that can be used for storing
program information, such as an ID number. The __IDLOC macro may be used to place data into these
locations. The macro is used in a manner similar to:

#include <pic.h>

__IDLOC(x);

where x is a list of nibbles which are to be positioned in to the ID locations. Only the lower four bits of
each ID location is programmed, so the following:
HI-TECH PICC Lite compiler 113

Features and Runtime Environment

 5
__IDLOC(15F0);

will attempt to fill four ID locations with the decimal values: 1, 5, 15 and 0. The base address of the ID
locations is specified by the idloc psect which will be automatically assigned an address dependent on
the type of processor selected.

5.10 EEPROM Data
For those PIC devices that support external programming of their EEPROM data area, the
__EEPROM_DATA() macro can be used to place the inital EEPROM data values into the HEX file ready
for programming. The macro is used as follows.

#include <pic.h>

__EEPROM_DATA(0, 1, 2, 3, 4, 5, 6, 7);

The macro accepts eight parameters, being eight data values. Each value should be a byte in size. Unused
values should be specified as a parameter of zero. The macro may be called multiple times to define the
required amount of EEPROM data. It is recommedned that the macro be placed outside any function
definitions.

The macro defines, and places the data within, a psect called eeprom_data. This psect is positioned by
a linker option in the usual way. Each value is stored as two bytes - the most significant byte being a zero
byte - in the HEX file.

This macro is not used to write to EEPROM locations during run-time. The macros EEPROM_READ()
and EEPROM_WRITE(), and the function versions of these macros, can be called to read from, and write
to, the EEPROM during program execution.

5.11 Bit Instructions
Wherever possible, PICC Lite will attempt to use the PIC bit instructions. For example, when using a
bitwise operator and a mask to alter a bit within an integral type, the compiler will check the mask value
to determine if a bit instruction can achieve the same functionality.

int foo;
foo |= 0x40;

will produce the instruction

bsf _foo,6

To set or clear individual bits within integral types, the following macros could be used.

#define bitset(var,bitno) ((var) |= 1 << (bitno))
#define bitclr(var,bitno) ((var) &= ~(1 << (bitno)))
114

Supported Data Types

 5
To perform the same operation as above, the bitset macro could be employed as follows.

bitset(foo,6);

5.12 Supported Data Types
The PICC Lite compiler supports basic data types of 1, 2 and 4 byte size. All multi-byte types follow
least significant byte first format, also known as little-endian. Word size values thus have the least
significant byte at the lower address, and double word size values have the least significant byte and least
significant word at the lowest address.

Table 5 - 3 shows the data types and their corresponding size and arithmetic type.

5.12.1 Radix Specifiers and Constants

The format of integral constants specifies their radix. PICC Lite supports the ANSI standard radix
specifiers as well as one which enables binary constants to specified in C code. The format used to
specify the radices are given in Table 5 - 4 on page 116. The letters used to specify binary or hexadecimal
radices are case insensitive, as are the letters used to specify the hexadecimal digits.

Table 5 - 3 Data Types

Type Size
(in bits) Arithmetic Type

bit 1 boolean
char 8 signed or unsigned integera

a.A char is unsigned by default, and signed if the PICL
-SIGNED_CHAR option is used.

unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 24 real
double 24 or 32b

b.A double defaults to 24-bit, but becomes 32-bit with the PICL
-D32 option.

real
HI-TECH PICC Lite compiler 115

Features and Runtime Environment

 5
Any integral constant will have a type which is the smallest type that can hold the value without
overflow. The suffix l or L may be used with the constant to indicate that it must be assigned either a
signed or unsigned long type, and the suffix u or U may be used with the constant to indicate that it must
be assigned an unsigned type, and both l or L and u or U may be used to indicate unsigned long int type.

Floating-point constants have double type unless suffixed by f or F, in which case it is a float constant.
The suffixes l or L specify a long double type which is identical to double with PICL.

Character constants are enclosed by single quote characters “ ’ ”, for example ’a’. A character constant
has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters “ ” “, for example ”hello
world”. The type of string constants is const char * and the strings are stored in ROM. Assigning
a string constant to a non-const char pointer will generate a warning from the compiler. For example:

char * cp = ”one”; // ”one” in ROM, produces warning
const char * ccp = ”two”; // ”two” in ROM
char ca[] = ”two”; // ”two” different to the above

A non-const array initialised with a string, for example the last statement in the above example, produces
an array in RAM which is initialised at startup time with the string ”two” (copied from ROM), whereas
a constant string used in other contexts represents an unnamed const-qualified array, accessed directly
in ROM.

PICC Lite will use the same storage location and label for strings that have identical character
sequences, except where the strings are used to initialise an array residing in RAM as indicated in the
last statement in the above example.

Two adjacent string constants (i.e. two strings separated only by white space) are concatenated by the
compiler. Thus:

const char * cp = ”hello ” ”world”;

assigned the pointer with the string ”hello world”.

Table 5 - 4 Radix Formats

Radix Format Example
binary 0bnumber or 0Bnumber 0b10011010
octal 0number 0763
decimal number 129
hexadecimal 0xnumber or 0Xnumber 0x2F
116

Supported Data Types

 5
5.12.2 Bit Data Types

PICC Lite allows single bit variables to be declared using the keyword bit. A variable declared bit,
for example:

static bit init_flag;

will be allocated in the bit-addressable psects rbit_n (where n is the bank number), and will be visible
only in that module or function. When the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible.

Bit variables cannot be auto or function parameters. A function may return a bit.

Bit variables behave in most respects like normal unsigned char variables, but they may only
contain the values 0 and 1, and therefore provide a convenient and efficient method of storing boolean
flags without consuming large amounts of internal RAM. It is not possible to declared pointers to bit
variables or statically initialise bit variables. Operations on bits are performed using the single bit
instructions wherever possible, thus the generated code to access bit variables is very efficient.

All the bit psects are cleared on startup, but are not initialised. To create a bit object which has a non-
zero initial value, explicitly initialise it at the beginning of your code.

Note that when assigning a larger integer type to a bit object, only the least-significant bit is used. If
you want to set a bit variable to be 0 or 1 depending on whether the other value is 0 or non-zero, use
the form

bitvar = other_var != 0;

The bit psects are declared using the psect directive flag bit. Eight bit objects will take up one byte
of storage space which is indicated by the bit psects’ scale value of 8 in the map file. The length given
in the map file for bit psects is in bits.

If the PICL flag -STRICT is used, the bit keyword becomes unavailable.

5.12.2.1 Using Bit-Addressable Registers
The bit variable facility may be combined with absolute variable declarations (see page 120) to access
bits at specific addresses. Absolute bits are numbered from 0 (the least significant bit of the first byte)
up. Therefore, bit number 3 in byte number 5 is actually absolute bit number 43 (that is 8bits/byte * 5
bytes + 3 bits).

For example, to access the Power Down Bit in the STATUS register, declare the STATUS register to be
at absolute address 03h, then declare a bit variable at absolute bit address 27:
HI-TECH PICC Lite compiler 117

Features and Runtime Environment

 5
static unsigned char STATUS @ 0x03;

static bit PD @ (unsigned)&STATUS*8+3;

Note that all standard registers and bits are defined in the header files provided. The only header file you
need to include to have access to the PIC registers is <pic.h> - at compile time this will include the
appropriate header for the selected chip.

5.12.3 8-Bit Integer Data Types

PICC Lite supports both signed char and unsigned char 8-bit integral types. The default char
type is unsigned char unless the PICL -SIGNED_CHAR option is used, in which case it is signed
char. Signed char is an 8-bit two’s complement signed integer type, representing integral values from
-128 to +127 inclusive. Unsigned char is an 8-bit unsigned integer type, representing integral values
from 0 to 255 inclusive. It is a common misconception that the C char types are intended purely for
ASCII character manipulation. This is not true, indeed the C language makes no guarantee that the
default character representation is even ASCII. The char types are simply the smallest of up to four
possible integer sizes, and behave in all respects like integers.

The reason for the name char is historical and does not mean that char can only be used to represent
characters. It is possible to freely mix char values with short, int and long in C expressions. On the
PIC the char types will commonly be used for a number of purposes, as 8-bit integers, as storage for
ASCII characters, and for access to I/O locations. The default unsigned char type is the most efficient
data type on the PIC and maps directly onto the 8-bit bytes which are most efficiently manipulated by
PIC instructions. It is suggested that char types be used wherever possible so as to maximize
performance and minimize code size.

5.12.4 16-Bit Integer Data Types

PICC Lite supports four 16-bit integer types. Int and short are 16-bit two’s complement signed integer
types, representing integral values from -32,768 to +32,767 inclusive. Unsigned int and unsigned
short are 16-bit unsigned integer types, representing integral values from 0 to 65,535 inclusive. All 16-
bit integer values are represented in little endian format with the least significant byte at the lower
address. Both int and short are 16 bits wide as this is the smallest integer size allowed by the ANSI
standard for C. The sizes of the integer types were chosen so as not to violate the ANSI standard.
Allowing a smaller integer size, such as 8 bits would lead to a serious incompatibility with the C
standard. 8-bit integers are already fully supported by the char types and should be used in place of int
wherever possible.

5.12.5 32-Bit Integer Data Types

PICC Lite supports two 32-bit integer types. Long is a 32-bit two’s complement signed integer type,
representing integral values from -2,147,483,648 to +2,147,483,647 inclusive. Unsigned long is a 32-
118

Supported Data Types

 5
bit unsigned integer type, representing integral values from 0 to 4,294,967,295 inclusive. All 32-bit
integer values are represented in little endian format with the least significant word and least significant
byte at the lowest address. Long and unsigned long occupy 32 bits as this is the smallest long integer
size allowed by the ANSI standard for C.

5.12.6 Floating Point

Floating point is implemented using the IEEE 754 32-bit format and a modified IEEE 754 (truncated)
24-bit format.

The truncated 24-bit format is used for all float values. For double values, the truncated 24-bit format
is the default, but may be explicitly invoked with the PICL -D24 option. The 32-bit format is used for
doubles by using the PICL -D32 option.

Both of these formats are described in Table 5 - 5, where:

! sign is the sign bit

! exponent is an 8-bit exponent which is stored as excess 127 (i.e. an exponent of 0 is stored as 127)

! mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the
left of the radix point which is always 1 except for a zero value, where the implied bit is zero.
A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent-127) x 1.mantissa.

Here are some examples of the IEEE 754 32-bit and modified IEEE 754 24-bit formats:

Table 5 - 5 Floating Point Formats

Format Sign biased
exponent mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx
Modified IEEE 754 24-bit x xxxx xxxx xxx xxxx xxxx xxxx

Table 5 - 6 IEEE 754 32-bit and 24-bit Examples

Format Number biased
exponent 1.mantissa decimal

IEEE 754 32-bit 7DA6B69Bh 11111011b
(251)

1.01001101011011010011011b
(1.302447676659)

2.77000e+37

Modified
IEEE 754 24-bit

42123Ah 10000100b
(132)

1.001001000111010b
(1.142395019531)

36.557
HI-TECH PICC Lite compiler 119

Features and Runtime Environment

 5
Note that the most significant bit of the mantissa column in Table 5 - 6 on page 119 (that is the bit to the
left of the radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which
case the float is zero).

The 32-bit example in Table 5 - 6 on page 119 can be calculated manually as follows.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary number
to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223 where 23 is
the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this fraction. The
floating-point number is then given by:

(-1)0 x 2 (124) x 1.302447676659 = 1 x 2.126764793256e+37 x 1.302447676659 ≈ 2.77000e+37

5.13 Absolute Variables
A global or static variable can be located at an absolute address by following its declaration with the
construct @ address, for example:

volatile unsigned charPortvar @ 0x06;

will declare a variable called Portvar located at 06h. Note that the compiler does not reserve any
storage, but merely equates the variable to that address, the compiler generated assembler will include
a line of the form:

_Portvar EQU 06h

Note that the compiler and linker do not make any checks for overlap of absolute variables with other
variables of any kind, so it is entirely the programmer’s responsibility to ensure that absolute variables
are allocated only in memory not in use for other purposes.

This construct is primarily intended for equating the address of a C identifier with a microprocessor
register. To place a user-defined variable at an absolute address, define it in a separate psect and instruct
the linker to place this psect at the required address. See “The #pragma psect Directive” on page 147.

5.14 Structures and Unions
PICC Lite supports struct and union types of any size from one byte upwards. Structures and unions
may be passed freely as function arguments and return values. Pointers to structures and unions are fully
supported.

5.14.1 Structure Qualifiers

PICC Lite supports the use of type qualifiers on structures. When a qualifier is applied to a structure, all
of its members will attain this qualification. For example:
120

Structures and Unions

 5
bank1 struct {
int number;
int *ptr;

} record;

In this example, the structure and its members number and ptr will be bank1 objects. Similarly, in the
following example the structure is made constant.

const struct {
int number;
int *ptr;

} record;

In this case, the structure will be placed into ROM, however, if the members of the structure were
individually made constant but the structure was not, then it would be positioned into RAM, but the
structure would be read-only.

5.14.2 Bit Fields in Structures

PICC Lite fully supports bit fields in structures.

Bit fields are allocated starting with the least significant bit of the word in which they will be stored. Bit
fields are allocated within 8-bit words. The first bit allocated is the least significant bit of the byte. Bit
fields are always allocated in 8-bit units. When a bit field is declared, it is allocated within the current
8-bit unit if it will fit, otherwise a new 8-bit byte is allocated within the structure. Bit fields never cross
the boundary between 8-bit units allocation unit. For example, the declaration:

struct {
 unsigned lo : 1;
 unsigned dummy : 6;
 unsigned hi : 1;
} foo;

will produce a structure occupying 1 byte. If foo was linked at address 10h, then the field hi will be bit
0 of address 10h, lo will be bit 7 of address 10h. The least significant bit of dummy will be bit 1 of address
10h and the most significant bit of dummy will be bit 6 of address 10h.

Unnamed bit fields may be declared to pad out unused space between active bits in control registers. For
example, if dummy is never used the structure above could have been declared as:
HI-TECH PICC Lite compiler 121

Features and Runtime Environment

 5
struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo;

5.15 Strings In ROM and RAM
An anonymous constant string is always placed in ROM and can only be accessed via a const pointer.
In the following example, the string ”Hello world” is a constant string and is stored in ROM. It is
therefore accessed via a const pointer:

#define HELLO "Hello world"
SendBuff(HELLO);

A non-const array initialised with a string, for example:

char fred[] = "Hello world";

produces an array in RAM which is initialised at startup time with the string ”Hello world” (copied
from ROM), whereas a constant string used in other contexts represents an unnamed array qualified
const, accessed directly in ROM.

If you want to pass a constant string to a function argument, or assign it to a pointer, that pointer must
be a const char *, for example:

void SendBuff(const char * ptr)

or similar. Now you can pass either a pointer into ROM or RAM (on the midrange chips only - const
pointers always point into ROM for baseline chips) and it will correctly fetch the data from the
appropriate place.

5.16 Const and Volatile Type Qualifiers
PICC Lite supports the use of the ANSI type qualifiers const and volatile.

The const type qualifier is used to tell the compiler that an object has a constant value and will not be
modified. If any attempt is made to modify an object declared const, the compiler will issue a warning.
User defined objects declared const are placed in a special psects in ROM. Obviously, a const object
must be initialised when it is declared as it cannot be assigned a value at any point in the code following.
For example:

const int version = 3;
122

Placement and access of ROM objects

 5
The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain its
value between successive accesses. This prevents the optimizer from eliminating apparently redundant
references to objects declared volatile because it may alter the behaviour of the program to do so. All
Input/Output ports and any variables which may be modified by interrupt routines should be declared
volatile, for example:

volatile unsigned char P_A @ 0x05;

Volatile objects are accessed in a different way to non-volatile objects. For example, when
assigning a non-volatile object the value 1, the object will be cleared and then incremented, but the
same operation performed on a volatile object will load the W register with 1 and then store this to
the appropriate address.

5.17 Placement and access of ROM objects
Objects stored in ROM include string literals, or constants, and any objects qualified using the const
keyword. Placement of these objects varies on the device for which the code is compiled.

5.17.1 Midrange PICs

Midrange PICs also store ROM-based objects as retlw instructions. Such objects are contained in
psects called strings or constn, where n is a number. Const compound objects (for example structures
or arrays) whose total size is less than 256 bytes, or const objects of basic type (for example ints) are
stored in the constn psects. Other objects are stored in the strings psect. The strings psects is
positioned explicitly whereas the constn psects are placed using the CONST class.

constn psects, in addition to the retlw instructions, begin with a addwf pc instruction. (This is why
you cannot have exactly 256 bytes in constn psects.) This instruction is used by routines which perform
indirect accessing of the objects.

5.18 Special Type Qualifiers
PICC Lite supports special type qualifiers, persistent and bank1 to allow the user to control
placement of static and extern class variables into particular address spaces. If the PICL option, -
STRICT is used, these type qualifiers are changed to __persistent and __bank1. These type
qualifiers may also be applied to pointers. These type qualifiers may not be used on variables of class
auto; if used on variables local to a function they must be combined with the static keyword. For
example, you may not write:

void test(void)
{

/* WRONG! */
persistent int intvar;
HI-TECH PICC Lite compiler 123

Features and Runtime Environment

 5
.. other code ..
}

because intvar is of class auto. To declare intvar as a persistent variable local to function
test(), write:

static persistent int intvar;

5.18.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialised are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired for
some data to be preserved across resets or even power cycles (on-off-on).

The persistent type qualifier is used to qualify variables that should not be cleared on startup. In
addition, any persistent variables will be stored in a different area of memory to other variables (for
example, the nvram or nvram_1 psect).

There are some library routines provided to check and initialise persistent data - see page 328 for
more information, and for an example of using persistent data.

5.18.2 Bank1 Type Qualifier

The bank1 type qualifiers are used to place static variables in RAM Bank 1.

Note that there is no bank0 qualifier. Objects default to being in bank 0 RAM if no other bank qualifier
is used. All auto objects are positioned into bank 0 RAM, along with function parameters.

Here is an unsigned char in bank 1 RAM:

static bank1 unsigned char fred;

Here is a pointer to an unsigned char in bank 1 RAM:

bank1 unsigned char * ptrfred;

Here is another pointer to an unsigned char in bank 1 RAM, except this time the pointer resides in
bank 1 RAM:

static bank 1 unsigned char * bank1 ptrfred;

5.19 Pointers
The format and use of pointers depend upon the range of processor.
124

Pointers

 5
5.19.1 Midrange Pointers

All pointers for the Midrange are the same as for the Baseline processors with the following exceptions:

! RAM Pointers
Because an 8-bit pointer can only access 256 bytes, RAM pointers can only access objects in
Bank 0 and Bank 1.

! Bank2 Pointers and Bank3 Pointers
These pointers are RAM pointers which are used to access Bank 2 and Bank 3 of RAM
respectively.

Note that at present it is not possible to have a Midrange RAM pointer which can access objects
in three or more banks, or which can access objects in bank pairs other than those mentioned
above.

! Const Pointers
Const pointers for the Midrange processors are 16-bit wide. They can be used to access either
ROM or RAM.

If the upper bit of the const pointer is non-zero, it is a pointer into RAM in nay bank. A const
pointer may be used to read from RAM locations, but writing to such locations is not permitted.

If the upper bit is zero, it is a pointer able to access the entire ROM space.

The ability of this pointer to access both ROM and RAM is very useful in string-related functions
where a pointer passed to the function may point to a string in ROM or RAM.

! Function Pointers
These pointers reference functions. A function is called using the address assigned to the pointer.

5.19.2 Combining Type Qualifiers and Pointers

The const, volatile and persistent modifiers may also be applied to pointers, controlling the
behaviour of the object which the pointer addresses. When using these modifiers with pointer
declarations, care must be taken to avoid confusion as to whether the modifier applies to the pointer, or
the object addressed by the pointer. The rule is as follows: if the modifier is to the left of the * in the
pointer declaration, it applies to the object which the pointer addresses. If the modifier is to the right of
the *, it applies to the pointer variable itself. Using the volatile keyword to illustrate, the declaration:

volatile char * nptr;

declares a pointer to a volatile character. The volatile modifier applies to the object which the
pointer addresses because it is to the left of the * in the pointer declaration.
HI-TECH PICC Lite compiler 125

Features and Runtime Environment

 5
The declaration:

char * volatile ptr;

behaves quite differently however. The volatile keyword is to the right of the * and thus applies to
the actual pointer variable ptr, not the object which the pointer addresses. Finally, the declaration:

volatile char * volatile nnptr;

will generate a volatile pointer to a volatile variable.

5.19.3 Const Pointers
Pointers to const should be used when indirectly accessing objects which have been declared using the
const qualifier. Const pointers behave in nearly the same manner as the default pointer class in each
memory model, the only difference being that the compiler forbids attempts to write via a pointer to
const. Thus, given the declaration:

const char * cptr;

the statement:

ch = *cptr;

is legal, but the statement:

*cptr = ch;

is not. In the baseline series, const pointers always access program ROM because const declared
objects are stored in ROM. In the midrange series, const pointers can access RAM as well as ROM.

5.20 Implementation-defined behaviour
Certain sections of the ANSI standard have implementation-defined behaviour. This section describes
how the PICC Lite compiler behaves in such situations.

5.20.1 Shifts applied to integral types

The ANSI standard states that the result of right shifting (>> operator) signed integral types is
implementation defined when the operand is negative. Typically, the possible actions that can be taken
are that when an object is shifted right by one bit, the bit value shifted into the most significant bit of the
result can either be zero, or a copy of the most significant bit before the shift took place. The latter case
amounts to a sign extension of the number.

PICC Lite performs a sign extension of any signed integral type (for example signed char, signed
int or signed long). Thus an object with the signed int value 0124h shifted right one bit will yield
the value 0092h and the value 8024h shifted right one bit will yield the value C012h.
126

Implementation-defined behaviour

 5
Right shifts of unsigned integral values always clear the most significant bit of the result.

Left shifts (<< operator), signed or unsigned, always clear the least significant bit of the result.

5.20.2 Division and modulus with integral types

The sign of the result of division with integers when either operand is negative is implementation
specific. Table 5 - 7 shows the expected sign of the result of the division of operand 1 with operand 2
when compiled with PICC Lite.

In the case where the second operand is zero (division by zero), the result will always be zero.

5.20.3 Integral Promotion

When there is more than one operand to an operator, they all must be of exactly the same type. The
compiler will automatically convert the operands, if necessary, so they have same type. The conversion
is to a “larger” type so there is no loss of information. Even if the operands have the same type, in some
situations they are converted to a different type before the operation. This conversion is called integral
promotion. PICC Lite performs these integral promotions where required. If you are not aware that these
changes of type have taken place, the results of some expressions are not what would normally be
expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned varieties of char,
short int or bitfield types to either signed int or unsigned int. If the result of the conversion
can be represented by an signed int, then that is the destination type, otherwise the conversion is to
unsigned int.

Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)
 count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and b are converted
to signed int via integral promotion before the subtraction takes place. The result of the subtraction

Table 5 - 7 Integral division

Operand 1 Operand 2 Quotient Remainder
+ + + +
- + - -
+ - - +
- - + -
HI-TECH PICC Lite compiler 127

Features and Runtime Environment

 5
with these data types is -50 (which is less than 10) and hence the body of the if() statement is executed.
If the result of the subtraction is to be an unsigned quantity, then apply a cast. For example:

if((unsigned int)(a - b) < 10)
 count++;

The comparison is then done using unsigned int, in this case, and the body of the if() would not
be executed.

Another problem that frequently occurs is with the bitwise compliment operator, “~”. This operator
toggles each bit within a value. Consider the following code.

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
 count++;

If c contains the value 55h, it often assumed that ~c will produce AAh, however the result is FFAAh
and so the comparison in the above example would fail. The compiler may be able to issue a mismatched
comparison error to this effect in some circumstances. Again, a cast could be used to change this
behaviour.

The consequence of integral promotion as illustrated above is that operations are not performed with
char-type operands, but with int-type operands. However there are circumstances when the result of an
operation is identical regardless of whether the operands are of type char or int. In these cases, PICC Lite
will not perform the integral promotion so as to increase the code efficiency. Consider the following
example.

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted to unsigned
int, the addition performed, the result of the addition cast to the type of a, and then the assignment can
take place. Even if the result of the unsigned int addition of the promoted values of b and c was
different to the result of the unsigned char addition of these values without promotion, after the
unsigned int result was converted back to unsigned char, the final result would be the same. An
8-bit addition is more efficient than an a 16-bit addition and so the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion would have to be
performed to comply with the ANSI standard.
128

Interrupt Handling in C

 5
5.21 Interrupt Handling in C
The compiler incorporates features allowing the PIC interrupt to be handled without writing any
assembler code. The function qualifier interrupt may be applied to one function to allow it to be
called directly from the hardware interrupt. The compiler will process the interrupt function
differently to any other functions, generating code to save and restore any registers used and exit using
the retfie instruction instead of a retlw or return instructions at the end of the function.

(If the PICL option -STRICT is used, the interrupt keyword becomes __interrupt. Wherever this
manual refers to the interrupt keyword, assume __interrupt if you are using -STRICT.)

An interrupt function must be declared as type interrupt void and may not have parameters. It may not
be called directly from C code, but it may call other functions itself, subject to certain limitations.

5.21.1 Midrange Interrupt Functions

An example of an interrupt function for a midrange PIC processor is shown here.

long tick_count;
void interrupt tc_int(void)
{

++tick_count;
}

As there is a maximum of one interrupt vector in the midrange PIC series. Only one interrupt
function may be defined. The interrupt vector will automatically be set to point to this function.

5.21.2 Context Saving on Interrupts

The PIC processor only saves the PC on its stack whenever an interrupt occurs. Other registers and
objects must be saved in software. The PICC Lite compiler determines which registers and objects are
used by an interrupt function and saves these appropriately.

If the interrupt routine calls other functions and these functions are defined before the interrupt
code in the same module, then any registers used by these functions will be saved as well. If the called
functions have not been seen by the compiler, a worst case scenario is assumed and all registers and
objects will be saved.

PICC Lite does not scan assembly code which is placed in-line within the interrupt function for
register usage. Thus, if you include in-line assembly code into an interrupt function, you may have
to add extra assembly code to save and restore any registers or locations used.
HI-TECH PICC Lite compiler 129

Features and Runtime Environment

 5
5.21.2.1 MidRange Context Saving
The code associated with interrupt functions that do not require registers or objects is placed directly
at the interrupt vector in a psect called intcode.

If context saving is required, this is performed by code placed in to a psect called intentry which will
be placed at the interrupt vector. Any registers or objects to be saved are done so to areas of memory
especially reserved for this purpose.

If the W register is to be saved, it is stored to memory reserved in the intsave_0 psect which is located
in Bank 0. If the processor for which the code is written has more than one RAM bank, it is impossible
to swap to Bank 0 without corrupting W, so an intsave_n psect is allocated to each RAM bank (where
n represents the bank number). The addresses of these memory areas are identical in the lower seven
bits.When the interrupt occurs, W will be saved into one of these memory areas depending on the bank
in which the processor was in before the interrupt occurred.

If the STATUS register is to be saved, it is stored into memory reserved in the intsave psect which
resides in Bank 0.

Some C code, for example division, may call an assembly routine which used temporary RAM locations.
If these are used during the interrupt function, they too will be saved by separate routines which are
automatically linked.

5.21.3 Context Retrieval

Any objects saved by the compiler are automatically restored before the interrupt function returns.
Midrange PIC restoration code is placed into a psect called int_ret. High-End PIC restoration code is
placed immediately after the code associated with the interrupt function.

5.21.4 Interrupt Levels

Normally it is assumed by the compiler that any interrupt may occur at any time, and an error will be
issued by the linker if a function appears to be called by an interrupt and by main-line code, or another
interrupt. Since it is often possible for the user to guarantee this will not happen for a specific routine,
the compiler supports an interrupt level feature.

This is achieved with the #pragma interrupt_level directive. There are two interrupt levels
available, and any interrupt functions at the same level will be assumed by the compiler to be
mutually exclusive. (Since the midrange PIC devices only support one active interrupt there is no value
in using more than one interrupt level when these processors are selected.) This exclusion must be
guaranteed by the user - the compiler is not able to control interrupt priorities. Each interrupt routine
may be assigned a single level, either 0 or 1.

In addition, any non-interrupt functions that are called from an interrupt function and also from
main-line code may also use the #pragma interrupt_level directive to specify that they will never
130

Interrupt Handling in C

 5
be called by interrupt functions of one or more levels. This will prevent linker from issuing an error
message because the function was included in more than one call graph. Note that it is entirely up to the
user to ensure that the function is NOT called by both main-line and interrupt code at the same time.
This will normally be ensured by disabling interrupts before calling the function. It is not sufficient to
disable interrupts inside the function after it has been called.

An example of using the interrupt levels is given below. Note that the #pragma directive applies to only
the immediately following function. Multiple #pragma interrupt_level directives may precede a
non-interrupt function to specify that it will be protected from multiple interrupt levels.

/* non-interrupt function called by interrupt and by main-line code */
#pragma interrupt_level 1
void bill(){

int i;
 i = 23;
}

/* two interrupt functions calling the same non-interrupt function */
#pragma interrupt_level 1

void interrupt fred(void)
{
 bill();
}

#pragma interrupt_level 1
void interrupt joh()
{

bill();
}

main()
{

bill();
}

5.21.5 Enabling Interrupts

Two macros are available in <pic.h> which control the masking of all available interrupts. These
macros are ei(), which enable or unmask all interrupts, and di(), which disable or mask all interrupts.
HI-TECH PICC Lite compiler 131

Features and Runtime Environment

 5
On High-End PIC devices, these macros affect the GLINTD bit in the CPUSTA register; in midrange
PIC devices, they affect the GIE bit in the INTCON register.

These macros should be used once the appropriate interrupt enable bits for the interrupts that are
required in a program have been enabled. For example:

ADIE = 1; // A/D interrupts will be used
PEIE = 1; // all peripheral interrupts are enabled
ei(); // enable all interrupts
di(); // disable all interrupts

5.22 Mixing C and Assembler Code
Assembly language code can be mixed with C code using three different techniques.

5.22.1 External Assembly Language Functions

Entire functions may be coded in assembly language as separate .as source files, assembled by the
assembler (ASPIC) and combined into the binary image using the linker. This technique allows
arguments and return values to be passed between C and assembler code. To access an external function,
first include an appropriate C extern declaration in the calling C code. For example, suppose you need
an assembly language function to provide access to the rotate left through carry instruction on the PIC:

extern char rotate_left(char);

declares an external function called rotate_left() which has a return value type of char and takes
a single argument of type char. The actual code for rotate_left() will be supplied by an external
.as file which will be separately assembled with ASPIC. The full PIC assembler code for
rotate_left() would be something like:

processor 16C84

PSECT text0,class=CODE,local,delta=2
GLOBAL _rotate_left
SIGNAT _rotate_left,4201

_rotate_left
; Fred is passed in the W register - assign it
; to ?a_rotate_left.
movwf ?a_rotate_left

; Rotate left. The result is placed in the W register.
rlf ?a_rotate_left,w
132

Mixing C and Assembler Code

 5
; The return is already in the W register as required.
return

FNSIZE _rotate_left,1,0
GLOBAL ?a_rotate_left
END

The name of the assembly language function is the name declared in C, with an underscore prepended.
The GLOBAL pseudo-op is the assembler equivalent to the C extern keyword and the SIGNAT pseudo-
op is used to enforce link time calling convention checking. Signature checking and the SIGNAT pseudo-
op are discussed in more detail later in this chapter.

Note that in order for assembly language functions to work properly they must look in the right place
for any arguments passed and must correctly set up any return values. Local variable allocation (via the
FNSIZE directive), argument and return value passing mechanisms are discussed in detail later in the
manual and should be understood before attempting to write assembly language routines.

An assembler language function called from C code must ensure that bank zero is selected before
returning. See 5.29 on page 139 for more information.

5.22.2 Accessing C objects from within assembler

Global C objects may be directly accessed from within assembly code using their name prepended with
an underscore character. For example, the object foo defined globally in a C module:

int foo;

may be access from assembler as follows.

GLOBAL _foo
movwf _foo

If the assembler is contained in a different module, then the GLOBAL assembler directive should be used
in the assembler code to make the symbol name available, as above. If the object is being accessed from
in-line assembly in another module, then an extern declaration for the object can be made in the C code,
for example:

extern int foo;

This declaration will only take effect in the module if the object is also accessed from within C code. If
this is not the case then, an in-line GLOBAL assembler directive should be used.

If in doubt as to writing assembler which access C objects, write code in C which performs a similar task
to what you intend to do and study the assembler listing file produced by the compiler.
HI-TECH PICC Lite compiler 133

Features and Runtime Environment

 5
5.22.3 #asm, #endasm and asm()

PIC instructions may also be directly embedded in C code using the directives #asm, #endasm and
asm(). The #asm and #endasm directives are used to start and end a block of assembler instructions
which are to be embedded inside C code. The asm() directive is used to embed a single assembler
instruction in the code generated by the C compiler. To continue our example from above, you could
directly code a rotate left on a memory byte using either technique as the following example shows:

#include <stdio.h>
unsigned char var;
void main(void)
{

 var = 1;
#asm
 rlf _var,f
#endasm
 asm("rlf _var,f");
}

When using inline assembler code, great care must be taken to avoid interacting with compiler generated
code. If in doubt, compile your program with the PICL -S option and examine the assembler code
generated by the compiler.

IMPORTANT NOTE: the #asm and #endasm construct is not syntactically part of the C program, and
thus it does not obey normal C flow-of-control rules. For example, you cannot use a #asm block with an
if statement and expect it to work correctly. If you use in-line assembler around any C constructs such
as if, while, do etc. you should use only the asm("") form, which is interpreted as a C statement and
will correctly interact with all C flow-of-control structures.

5.23 Signature Checking
The compiler automatically produces signatures for all functions. A signature is a 16-bit value computed
from a combination of the function’s return data type, the number of its parameters and other
information affecting the calling sequence for the function. This signature is output in the object code
of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. Thus if a function is declared in one
module in a different way (for example, as returning a char instead of short) then the linker will report
an error.

It is sometimes necessary to write assembly language routines which are called from C using an extern
declaration. Such assembly language functions need to include a signature which is compatible with the
134

Linking Programs

 5
C prototype used to call them. The simplest method of determining the correct signature for a function
is to write a dummy C function with the same prototype and compile it to assembly language using the
PICL -S option. For example, suppose you have an assembly language routine called _widget which
takes two int arguments and returns a char value. The prototype used to call this function from C
would be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with two int arguments
and a char return value would be generated. In order to match the correct signature the source code for
widget needs to contain an ASPIC SIGNAT pseudo-op which defines the same signature value. To
determine the correct value, you would write the following code:

char widget(int arg1, int arg2)
{
}

and compile it to assembler code using

PICL -S x.c

The resultant assembler code includes the following line:

SIGNAT _widget,8297

The SIGNAT pseudo-op tells the assembler to include a record in the .obj file which associates the value
8297 with symbol _widget. The value 8297 is the correct signature for a function with two int
arguments and a char return value. If this line is copied into the .as file where _widget is defined, it
will associate the correct signature with the function and the linker will be able to check for correct
argument passing. For example, if another .c file contains the declaration:

extern char widget(long);

then a different signature will be generated and the linker will report a signature mis-match which will
alert you to the possible existence of incompatible calling conventions.

5.24 Linking Programs
The compiler will automatically invoke the linker unless requested to stop after producing assembler
code (PICL -S option) or object code (PICL -C option).

PICL and HTLPIC by default generate Intel HEX files and Bytecraft COD. If you use the -BIN option
or specify an output file with a .bin filetype using the PICL -O option the compiler will generate a
binary image instead. After linking, the compiler will automatically generate a memory usage map
HI-TECH PICC Lite compiler 135

Features and Runtime Environment

 5
which shows the address used by, and the total sizes of, all the memory areas which are used by the
compiled code. Note that bit objects are shown separately. For example:

Memory Usage Map:
Program ROM $0000 - $001A$001B (27) words
Program ROM $07EE - $07FF$0012 (18) words

$002D (45) words total Program ROM

Bank 0 RAM $0020 - $0022$0003 (3) bytes total Bank 0 RAM
Bank 1 RAM $00A0 - $00A2$0003 (3) bytes total Bank 1 RAM
Bank 0 Bits $0118 - $0119$0002 (2) bits total Bank 0 Bits

More detailed memory usage information, listed in ascending order of individual psects, may be
obtained by using the PICL -PSECTMAP option.

5.25 Memory Usage
The compiler makes few assumptions about memory. With the exception of variables declared using the
@ address construct, absolute addresses are not allocated until link time.

The memory used is based upon page and bank information in the chipinfo file (which defaults to
piclite.ini in the LIB directory) The linker will automatically locate code and ROM data into all the
available memory pages and ensure that a psect does not straddle a page boundary.

5.26 Register Usage
In the midrange processors, the W register is used for register-based function argument passing and for
function return values. This register should be preserved by any assembly language routines which are
called.

5.27 Function Argument Passing
The method used to pass function arguments depends on the size of the argument or arguments.

If there is only one argument, and it is one byte in size, it is passed in the W register.

If there is only one argument, and it is greater than one byte in size, it is passed in the argument area of
the called function. If there are subsequent arguments, these arguments are also passed in the argument
area of the called function.

If there is more than one argument, and the first argument is one byte in size, it is passed in the auto
variable area of the called function, with subsequent arguments being passed in the argument area of the
called function.
136

Function Return Values

 5
In the case of a variable argument list, which is defined by the ellipsis symbol ..., the calling function
builds up the variable argument list and passes a pointer to the variable part of the argument list in
btemp. btemp is the label at the start of the temp psect (i.e. the psect used for temporary data).

Take, for example, the following ANSI-style function:

void test(int a, int b, int c)
{
}

The function test() will receive all arguments in its function argument block. A call:

test(0x65af, 0x7288, 0x080c);

would generate code similar to:

movlw 0AFh
movwf (((?_test))&7fh)
movlw 065h
movwf (((?_test+1))&7fh)
movlw 088h
movwf ((0+((?_test)+02h))&7fh)
movlw 072h
movwf ((1+((?_test)+02h))&7fh)
movlw 0Ch
movwf ((0+((?_test)+04h))&7fh)
movlw 08h
movwf ((1+((?_test)+04h))&7fh)
lcall (_test)

Parameters passed to a function are referred to by a label which consists of question mark ? followed by
an underscore _ and the name of the function to which is added an offset. So, for example in the above
code, the first parameter to the function test, the int value 0x65af, is held in the memory locations
?_test and ?_test+1.

It is often helpful to write a dummy C function with the same argument types as your assembler function,
and compile to assembler code with the PICL -S option, allowing you to examine the entry and exit code
generated. In the same manner, it is useful to examine the code generated by a call to a function with the
same argument list as your assembler function.

5.28 Function Return Values
Function return values are passed to the calling function as follows:
HI-TECH PICC Lite compiler 137

Features and Runtime Environment

 5
5.28.1 8-Bit Return Values

For the baseline processors, 8-bit values (char, unsigned char and pointers) are returned in memory
via the temp psect.

For the midrange processors, 8-bit values are returned in the W register. For example, the function:

char return_8(void)
{

return 0;
}

will exit with the following code:

movlw 0
return

5.28.2 16-Bit and 32-bit Return Values

16-bit and 32-bit values (int, unsigned int, short, unsigned short and some pointer values;
long, unsigned long, float and double) are returned in memory, with the least significant word in
the lowest memory location. For example, the function:

int return_16(void)
{

return 0x1234;
}

will exit with the following code:

movlw low 01234h
movwf btemp
movlw high 01234h
movwf btemp+1
return

5.28.3 Structure Return Values

Composite return values (struct and union) of size 4 bytes or smaller are returned in memory as with
16-bit and 32-bit return values. For composite return values of greater than 4 bytes in size, the structure
or union is copied into the struct psect. For example:

struct fred
{

int ace[4];
138

Function Calling Convention

 5
}

struct fred return_struct(void)
{

struct fred wow;

return wow;
}

will exit with the following code:

movlw ?a_return_struct+0
movwf 4
movlw structret
movwf btemp
movlw 8
GLOBAL structcopy
lcall structcopy
return

5.29 Function Calling Convention
The compiler assumes that bank zero will be selected after returning from any function call. The
compiler inserts the appropriate instructions to ensure this is true if required. Any functions callable
from C code that are written in assembler must also ensure that bank zero is selected before the return.

5.30 Local Variables
C supports two classes of local variables in functions: auto variables which are normally allocated in
the function’s auto-variable block and static variables which are always given a fixed memory
location.

5.30.1 Auto Variables

Auto (i.e. automatic) variables are the default type of local variable. Unless explicitly declared to be
static a local variable will be made auto. Auto variables are allocated in the auto variable block and
referenced by indexing off the start of that function’s block. The variables will not necessarily be
allocated in the order declared - in contrast to parameters which are always in lexical order. Note that
most type qualifiers cannot be used with auto variables, since there is no control over the storage
location. Exceptions are const and volatile.

All auto variables are allocated memory in bank 0. The bank qualifiers cannot be used with objects of
type auto.
HI-TECH PICC Lite compiler 139

Features and Runtime Environment

 5
The auto-variable blocks for a number of functions are overlapped by the linker if those functions are
never called at the same time.

Auto objects are referenced with a symbol that consists of a question mark ? concatenated with
a_function plus some offset, where function is the name of the function in which the object is
defined. For example, if the int object test is the first local object defined in the function main() it will
be accessed using the addresses ?a_main and ?a_main+1.

5.30.2 Static Variables
Uninitialized static variables are allocated in the rbss_n psect and occupy fixed memory locations
which will not be overlapped by storage for other functions. Static variables are local in scope to the
function which they are declared in, but may be accessed by other functions via pointers. Static
variables are guaranteed to retain their value between calls to a function, unless explicitly modified via
a pointer. Static variables are not subject to any architectural limitations on the PIC.

Static variables which are initialised are only done so once during the program’s execution. Thus, they
may be preferable over initialised auto objects which are assigned a value every time the block in which
the definition is placed is executed.

5.31 Compiler Generated Psects
The compiler splits code and data objects into a number of standard program sections (referred to as
psects). The HI-TECH assembler allows an arbitrary number of named psects to be included in
assembler code. The linker will group all data for a particular psect into a single segment.

If you are using PICL or HTLPIC to invoke the linker, you don’t need to worry about the information
documented here, except as background knowledge. If you want to run the linker manually (this is not
recommended), or write your own assembly language subroutines, you should read this section
carefully.

! The compiler generated psects which are placed in ROM are:

powerup Which contains executable code for the standard or user-supplied power-up routine.

idata_n These psects (where n is the bank number) contain the ROM image of any initialised
variables. These psects are copied into the rdata_n psects at startup.

textn These psects (where n is a number) contain all executable code for the Midrange and
High-end processors. They also contains any executable code after the first goto
instruction which can never be skipped for the Baseline processors.

ctextn These psects (where n is a number) are used only in the Baseline processors. They
contain executable code from the entry point of each fastcall function until the first
140

Compiler Generated Psects

 5
goto instruction which can never be skipped. Further executable code is placed in the
textn psects.

text Is a global psect used for executable code for some library functions.

constn These psects (where n is a number) hold objects that are declared const and which are
not modifiable.

strings The strings psect is used for some const objects. Const objects whose size exceeds
256 bytes, for example const arrays, are positioned in this psect. It also includes all
unnamed string constants, such as string constants passed as arguments to routines like
printf() and puts(). This psect is linked into ROM, since it does not need to be
modifiable.

stringtable The stringtable psect contains the string table which is used to access objects in the
strings psect. This psect will only be generated if there is a strings or baseline
jmp_tab psect.

config Used to store the configuration word.

idloc Used to store the ID location words.

intentry Contains the entry code for the interrupt service routine. This code saves the necessary
registers and parts of the temp psect.

intcode Is the psect which contains the executable code for the interrupt service routine.

intret Is the psect which contains the executable code responsible for restoring saved registers
and objects after an interrupt routine has completed executing.

init Used by initialisation code which, for example, clears RAM.

end_init Used by initialisation code which, for example, clears RAM.

float_text Used by some library routines, and in particular by arithmetic routines.It is possible that
this psect will have a non-zero length even if no floating point operations are included
in a program.

clrtext Used by some startup routines for clearing the rbss_n psects.

! The compiler generated psects which are placed in RAM are:

rbss_n These psects (where n is the bank number) contain any uninitialized variables.

rdata_n These psects (where n is the bank number) contain any initialised variables.
HI-TECH PICC Lite compiler 141

Features and Runtime Environment

 5
nvram This psect is used to store persistent variables. It is not cleared or otherwise
modified at startup.

rbit_n These psects (where n is the bank number) are used to store all bit variables except
those declared at absolute locations. The declaration:

static bit flag;

will allocate flag as a single bit in the rbit_n psect.

struct Contains any structure which is returned from a function.

intsave Holds the W register saved by the interrupt service routine. If necessary, the W register
will also be saved in the intsave_n psects.

intsave_n (Where n is a non-zero bank number) may also hold the W register saved by the
interrupt service routine. (See the description of the intsave psect.)

temp Is used to store scratch variables used by the compiler. These include function return
values larger than a char and values passed to and returned from library routines. If
possible, this will be positioned in the common area of the processor.

xtemp Is used to store scratch variables used by the compiler and to pass values to and from
the library routines.

5.32 Runtime startup Modules
A C program requires certain objects to be initialised and the processor to be in a particular state before
it can begin execution. It is the job of the run-time startup code to ready the program for execution. Since
this is code that executed before the C program, it is necessarily written in assembler code. The run-time
startup code is executed almost immediately after reset. In fact it is called by a special powerup routine,
described below, that is directly located at the reset vector address. For the PIC processors, the principle
job of the run-time startup code is to clear unitialised variables and assign values to those variables that
have been initialised.

The run-time startup code will clear, or assign the value zero, any variables which are unitialised at their
definition and which are non-auto. This amounts to those objects which have been placed in the rbss_n
or rbit_n psects (where n is a digit representing the bank number). Since these psects are defined as a
contiguous block of memory, the run-time startup code calls a routine to clear a block of memory for
each psect. In the following example, all but the object loc will be cleared by the startup code since it
is an auto object. The initial value of loc is unknown.

int i;
bank1 int b1i;
bit b;
142

Runtime startup Modules

 5
void main(void)
{

static int sloc;
int loc;

...

The code which clears these psects is only included if it is necessary. The modules which contain the
clear routines can be found in the SOURCES directory of you distribution. The file clr.as contains the
code to clear a block of memory. This is called, if required, by code in the files clrbankn.as and
clrbitn.as (where n is a digit representing a bank number) which initiate the clearing of each psect.
Each bank must be cleared separately by separate routines.

The other function of the run-time startup code is to initialise those variables assigned a value at their
definition. This amounts to a block copy of the initial values from ROM to the RAM areas designated
for those objects. Code to perform the copy is only included if required. In this example:

int i = 7;
bank1 int b1i = 6;
bit b;
void main(void)
{

static int sloc = 5;
int loc = 7;

...

The objects i, b1i and sloc will be initialsed by the run-time startup code. Note that you cannot
initalise bit objects and that initialised automatic variables are assigned their starting value by code
placed within the function in which they are defined.

Any objects defined in assembler code, i.e. have memory reserved using any of the DS, DB or DW
assembler directives, will also be cleared or initialised at startup providing that the directives are placed
within the compiler-generated psect used for C variables, such as rbss_0, rdata_1 or rbit_0 etc.

Some baseline PIC devices may require oscillator calibration. If required, this is also perfomed by the
run-time startup code.

The run-time startup code jumps to the function main(), which is referred to as _main by the run-time
startup code. Note the underscore “_” prepended to the function name. A jump rather than a call is
executed to save one level of stack. The function main() is, by definition of the C language, the “main
program”.

The source code used to generate the run-time startup module is called picrt66x.as which is in the
SOURCES directory of your distribution. In addition to this will be the routines, mentioned above, to
HI-TECH PICC Lite compiler 143

Features and Runtime Environment

 5
copy data or clear memory as required. These routines are not called by name, but are linked in, if
required, to a position in picrt66x.as indicated by a comment.

The run-time startup code is provided by a standard module found in the LIB directory.

5.32.1 The powerup Routine

Some hardware configurations require special initialisation, often within the first few cycles of
execution after reset. Rather than having to modify the run-time startup module to achieve this there is
a hook to the reset vector provided via the powerup routine. This is a user-supplied assembler module
that will be executed immediately on reset. Often this can be embedded in a C module as embedded
assembler code. A “dummy” powerup routine is included in the file powerup.as. The file can be
copied, modified and included into your project. It will replace the default powerup routine.

The powerup routine should be written assuming that little or no RAM is working and should only use
system resources after it has tested and enabled them. The following example code shows the default
powerup routine which are in the standard library:

GLOBAL powerup,start
PSECT powerup,class=CODE,delta=2

powerup

ljmp start

The powerup routine is generally intended to be relatively small, however, since it is linked before the
interrupt vectors, it may interfere with them if it becomes to large. To avoid conflicting with the interrupt
vectors, the powerup routine can be made to jump to a separate function, which will be linked at a
different location, and then jumps to start. The following gives an example of this:

GLOBAL powerup,start,big_powerup
PSECT powerup,class=CODE,delta=2

powerup

ljmp big_powerup

PSECT big_powerup,class=CODE,delta=2

big_powerup

...powerup code...

ljmp start
144

Linker-Defined Symbols

 5
5.33 Linker-Defined Symbols
The link address of a psect can be obtained from the value of a global symbol with name __Lname where
name is the name of the psect. For example, __Lbss is the low bound of the bss psect. The highest
address of a psect (i.e. the link address plus the size) is symbol __Hname. If the psect has different load
and link addresses, as may be the case if the data psect is linked for RAM operation, the load address is
__Bname.

5.34 Preprocessor Directives
The PICC Lite compiler accepts several specialised preprocessor directives in addition to the standard
directives. These are listed in Table 5 - 8 on page 146.

Macro expansion using arguments can use the # character to convert an argument to a string, and the ##
sequence to concatenate tokens.

5.35 Pragma Directives
There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standard #pragma facility. The format of a pragma
is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain options. A list of the
keywords is given in Table 5 - 9 on page 147. Those keywords not discussed elsewhere are detailed
below.

5.35.1 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other
national characters, the #pragma jis directive will enable proper handling of these characters,
specifically not interpreting a back-slash \ character when it appears as the second half of a two byte
character. The nojis directive disables this special handling. JIS character handling is disabled by
default.

5.35.2 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner of printf(). Although the format string is interpreted at run-time, it can be compile-time
checked for consistency with the remaining arguments. This directive enables this checking for the
named function, e.g. the system header file <stdio.h> includes the directive #pragma
printf_check(printf) const to enable this checking for printf(). You may also use this for any
user-defined function that accepts printf-style format strings. The qualifier following the function name
HI-TECH PICC Lite compiler 145

Features and Runtime Environment

 5
Table 5 - 8 Preprocessor directives

Directive Meaning Example
preprocessor null directive, do nothing
#assert generate error if condition false #assert SIZE > 10
#asm signifies the begining of in-line assembly #asm

movlw 10h
#endasm

#define define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif short for #else #if see #ifdef
#else conditionally include source lines see #if
#endasm terminate in-line assembly see #asm
#endif terminate conditional source inclusion see #if
#error generate an error message #error Size too big
#if include source lines if constant expression

true
#if SIZE < 10
c = process(10)
#else
skip();
#endif

#ifdef include source lines if preprocessor symbol
defined

#ifdef FLAG
do_loop();
#elif SIZE == 5
skip_loop();
#endif

#ifndef include source lines if preprocessor symbol
not defined

#ifndef FLAG
jump();
#endif

#include include text file into source #include <stdio.h>
#include "project.h"

#line specify line number and file name for listing #line 3 final
#nn (where nn is a number) short for #line nn #20
#pragma compiler specific options See section 5.35 on page 145
#undef undefines preprocessor symbol #undef FLAG
#warning generate a warning message #warning Possible conflict
146

Pragma Directives

 5
is to allow automatic conversion of pointers in variable argument lists. The above example would cast
any pointers to strings in RAM to be pointers of the type (const char *)

Note that the warning level must be set to -1 or below for this option to have effect.

5.35.3 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as already
documented. This is fine for most applications, but sometimes it is necessary to redirect variables or
code into different psects when a special memory configuration is desired. Code and data for any of the
standard C psects may be redirected using a #pragma psect directive. For example, if all the
uninitialised global data in a particular C source file is to be placed into a psect called otherram, the
following directive should be used:

#pragma psect rbss_0=otherram

This directive tells the compiler that anything which would normally be placed in the rbss_0 psect
should now be placed in the otherram psect.

Placing code in a different psect is slightly different. Code is placed in a multiple psects which have
names like: text0, text1, text2 and so on. Thus you do not know the exact psect in which code will
reside. To redirect code the following preprocessor directive can be used.

#pragma psect text%%u=othercode

The %u sequence corresponds to the internal representation of the text psect number. The additional
percent character is used to ensure that the psect name is scanned correctly.

Table 5 - 9 Pragma Directives

Directive Meaning Example
interrupt_level Allow interrupt function to be called from

main-line code. See section 5.21.4 on page
130

#pragma interrupt_level 1

jis Enable JIS character handling in strings #pragma jis
nojis Disable JIS character handling (default) #pragma nojis
printf_check Enable printf-style format string checking #pragma printf_check(printf)

const
psect Rename compiler-defined psect #pragma psect text=mytext
regsused Specify registers which are used in an

interrupt
#pragma regsused w

switch Specify code generation for switch state-
ments

#pragma switch direct
HI-TECH PICC Lite compiler 147

Features and Runtime Environment

 5
If you wish to redirect more than one function in a module to individually numbered psects, use the
pragma directive for each function as follows.

#pragma psect text%%u=othercode%%u
void function(void)
{
 // function definition etc

#pragma psect text%%u=othercode%%u
void another(void)
{
 // etc

This example will define the psect othercode0 for function()’s code, and othercode1 for
another()’s code. The %u sequence will be incremented for each function.

Any given psect should only be redirected once in a particular source file, and all psect redirections for
a particular source file should be placed at the top of the file, below any #include directives and above
any other declarations. For example, to declare a group of uninitialized variables which are all placed in
a psect called otherram, the following technique should be used:

--File OTHERRAM.C
#pragma psect rbss_0=otherram
char buffer[5];
int var1, var2, var3;

Any files which need to access the variables defined in otherram.c should #include the following
header file:

--File OTHERRAM.H
extern char buffer[5];
extern int var1, var2, var3;

The #pragma psect directive allows code and data to be split into arbitrary memory areas. Definitions
of code or data for non-standard psects should be kept in separate source files as documented above.
When linking code which uses non-standard psect names, you will need to use the PICL -L option to
specify an extra linker option, or use the linker manually, or use an HTLPIC project to compile and link
your code. If you want a nearly standard configuration with the addition of only an extra psect like
otherram, you can use the PICL -L option to add an extra -P specification to the linker command. For
example:

PICL -L-Potherram=50h/400h -16C84 test.obj otherram.obj
148

Pragma Directives

 5
will link test.obj and otherram.obj with a standard configuration, and the extra otherram psect at
50h in RAM, but not overlapping any valid ROM load address. If you are using the HTLPIC integrated
environment you can set up a project file by selecting Start New Project, add the names of your four
source files using Source Files ... and then modify the linker options to include any new psects by
selecting Linker Options

5.35.4 The #pragma regsused Directive

PICC Lite will automatically save context when an interrupt occurs. The compiler will determine only
those registers and objects which need to be saved for the particular interrupt function defined. The
#pragma regsused directive allows the programmer to further limit the registers and objects that the
compiler might save and retrieve on interrupt.

Table 5 - 10 on page 149 shows registers names that would commonly be used with this directive. The
register names are not case sensitive and a warning will be produced if the register name is not
recognised.

This pragma affects the first interrupt function following in the source code. Code for High-End devices
which contains multiple interrupt functions should include one directive for each interrupt function.

For example, to limit the compiler to saving no registers other than the W register and FSR register for
an interrupt function, use:

#pragma regsused w fsr

Even if a register, other than W or FSR, has been used and that register would normally be saved, it will
not be saved if this pragma is in effect. The W and/or FSR register will only be automatically saved by
the compiler if required.

5.35.4.1 The #pragma switch Directive
Normally the compiler decides the code generation method for switch statements which results in the
smallest possible code size. Specifying the direct option to the #pragma switch directive forces the
compiler to generate the table look-up style switch method. This is mostly useful where either timing or

Table 5 - 10 Valid regsused Register Names

Register Name Description
w W register
btemp, btemp+1...btemp+11 btemp temporary area
fsr indirect data pointer
tablreg table registers: low and high byte of

table pointer and table latch
HI-TECH PICC Lite compiler 149

Features and Runtime Environment

 5
code size is an issue for switch statements (ie: state machines) and a jump table is preferred over direct
comparison or vice versa. This pragma affects all code generated onwards. The auto option may be
used to revert to the default behaviour.

5.36 Standard I/O Functions and Serial I/O
A number of the standard I/O functions are provided in the C library with the compiler, specifically those
functions intended to read and write formatted text on standard output and input. A list of the available
functions is in Table 5 - 11. More details of these functions are in the Library Functions chapter.

Before any characters can be written or read using these functions, the putch() and getch() functions
must be written. Other routines which may be required include getche() and kbhit().

You will find samples of serial code which implements the putch() and getch() functions in the file
serial.c in the SAMPLES directory.

5.37 MPLAB-specific Debugging Information
Certain options and compiler features are specifically intended to help MPLAB perform symbolic
debugging. The -FAKELOCAL switch (Fake local symbols) performs two functions, both specific to
MPLAB. Since MPLAB does not read the local symbol information produced by the compiler, this
options generates additional global symbols which can be used to represent local symbols in a program.
The format for the symbols is function_name.symbol_name. Thus, if a variable called foo was
defined inside the function main(), MPLAB would allow access to a global object called main.foo.
This symbol format is not available in assembler code. References to this object in assembler would be
via the symbol _main$foo. Although this information allows access to most local objects, if there are
two or more objects with the same name in the same function, then you will not be able to examine both
as they redefine the same symbol.

The -FAKELOCAL switch also alters the line numbering information produced so that MPLAB can better
follow the C source when performing source-level stepping.

The -ICD switch (MPLAB-ICD support) produces code suitable for the MPLAB In-Circuit Debugger.
This debugger is available on some chips and requires certain ROM and RAM addresses to be reserved.
The compiler reads information in the piclite.ini file to determine whether a chip supports the debugger
and adjusts the linker options accordingly. When using the debugger, the first instruction at the reset
vector is not executed. This instruction will be the first instruction in the powerup.as file which is

Table 5 - 11 Supported STDIO Functions

Function name Purpose
printf(const char * s, ...) Formatted printing to stdout
sprintf(char * buf, const char * s, ...) Writes formatted text to buf
150

MPLAB-specific Debugging Information

 5
automatically linked in by the compiler. This should not alter the operation of the program or the
debugger and does not necessarily have to be a nop instruction.
HI-TECH PICC Lite compiler 151

Features and Runtime Environment

 5
152

 6
PICC Lite Macro Assembler

The HI-TECH PICC Lite Macro Assembler assembles source files for the Microchip PIC series of
microprocessors. This chapter describes the usage of the assembler and the directives (assembler
pseudo-ops and controls) accepted by the assembler.

The PICC Lite Macro Assembler package includes a linker, librarian, cross reference generator and an
object code converter.

6.1 Assembler Usage
The assembler is called ASPIC and is available to run on PC and Unix machines. Note that the assembler
will not produce any messages unless there are errors or warnings - there are no “assembly completed”
messages.

The usage of the assembler is similar under all of these operating systems. All command line options are
recognised in either upper or lower case. The basic command format is shown:

aspic [options] files ...

Files is a space separated list of one or more assembler source files. Where more than one source file is
specified the assembler treats them as a single module, i.e. a single assembly will be performed on the
concatenation of all the source files specified. The files must be specified in full, no default extensions
or suffixes are assumed.

Options is an optional space separated list of assembler options, each with a minus sign (-) as the first
character. A full list of possible options is given in Table 6 - 1 on page 154, and a full description of each
option follows.

6.2 Assembler Options
The command line options recognised by ASPIC are as follows:

-processor This option defines the processor which is being used. See the HI-TECH web site for a
current list of supported processors. You can also add your own processors to the compiler.
For more information about this, See “Processor Support” on page 109..

-A An assembler file with an extension .opt will be produced if this option is used. This is
useful when checking the optimized assembler produced using the -O option.

-C A cross reference file will be produced when this option is used. This file, called srcfile.crf
where srcfile is the base portion of the first source file name, will contain raw cross
HI-TECH PICC Lite compiler 153

PICC Lite Macro Assembler

 6
 reference information. The cross reference utility CREF must then be run to produce the
formatted cross reference listing.

-Cchipinfo Define the chipinfo file to use. This option is not normally required as the chipinfo file
lib\picinfo.ini is normally not used.

-E The default format for an error message is in the form:

filename: line: message

where the error of type message occurred on line line of the file filename. The -E2 option
will produce a less-readable format which is used by HPD.

-Flength The default listing pagelength is 66 lines (11 inches at 6 lines per inch). The -F option
allows a different page length to be specified.

-H Particularly useful in conjunction with the -A option, this option specifies to output
constants as hexadecimal values rather than decimal values.

Table 6 - 1 ASPIC Assembler options

Option Meaning Default
-processor Define the processor
-A Produce assembler output Produce object code
-C Produce cross-reference No cross reference
-Cchipinfo Define the chipinfo file lib\picinfo.ini
-Eformat Set error format
-Flength Specify listing form length 66
-H Output hex values for constants Decimal values
-I List macro expansions Don’t list macros
-icd Assemble for use with MPLAB-ICD No ICD support
-Llistfile Produce listing No listing
-O Perform optimization No optimization
-Ooutfile Specify object name srcfile.OBJ
-Raddress Maximum ROM size
-S No size error messages
-U No undefined symbol messages
-V Produce line number info No line numbers
-Wwidth Specify listing page width 80
-X No local symbols in OBJ file
154

Assembler Options

 6
-I This option forces listing of macro expansions and unassembled conditionals which would
otherwise be suppressed by a NOLIST assembler control. The -L option is still necessary
to produce a listing.

-icd This option is used to tell the assembler to take into account the reduced rom size available
when assembling for use with the MPLAB-ICD.

-Llistfile This option requests the generation of an assembly listing. If listfile is specified then the
listing will be written to that file, otherwise it will be written to the standard output.

-O This requests the assembler to perform optimisation on the assembly code. Note that the
use of this option slows the assembly down, as the assembler must make an additional pass
over the input code.

-Ooutfile By default the assembler determines the name of the object file to be created by stripping
any suffix or extension (i.e. the portion after the last dot) from the first source file name and
appending .obj. The -O option allows the user to override the default and specify and
explicit filename for the object file.

-Raddress The value, address, passed to the assembler with this option is the highest address used by
code in ROM. From this value, the assembler can determine how many page bits need to
be adjusted for an fcall or ljmp pseudo instruction.

-S If a byte-size memory location is initialized with a value which is too large to fit in 8 bits,
then the assembler will generate a “Size error” message. Use of the -S option will suppress
this type of message.

-U Undefined symbols encountered during assembly are treated as external, however an error
message is issued for each undefined symbol unless the -U option is given. Use of this
option suppresses the error messages only, it does not change the generated code.

-V This option will include in the object file produced by the assembler line number and file
name information for the use of a debugger. Note that the line numbers will be assembler
code lines - when assembling a file produced by the compiler, there will be line and file
directives inserted by the compiler so this option is not required.

-Wwidth This option allows specification of the listfile paper width, in characters. Width should be
a decimal number greater than 41. The default width is 80 characters.

-X The object file created by the assembler contains symbol information, including local
symbols, i.e. symbols that are neither public or external. The -X option will prevent the
local symbols from being included in the object file, thereby reducing the file size.
HI-TECH PICC Lite compiler 155

PICC Lite Macro Assembler

 6
6.3 PIC Assembly Language
The source language accepted by the HI-TECH Software PICC Lite Macro Assembler is described
below. All opcode mnemonics and operand syntax are strictly PIC assembly language. Additional
mnemonics are documented in this section.

6.3.1 Additional Mnemonics

Apart from the PIC assembly language mnemonics, the PIC assembler includes the fcall and ljmp
mnemonics. These instructions implement call and goto instructions but with the added job of setting
the necessary bits in PCLATH. These additional mnemonics should be used where possible as they make
assembler code independent of the final position of the routines that are to be executed.

6.3.2 Assembler Format Deviations

The HI-TECH PICC Lite assembler uses a slightly modified form of assembly language to that specified
by Microchip. Certain PIC instructions used by Microchip assembler use the operands “,0” or “,1” to
specify the destination for the result of that operation. The HI-TECH PICC Lite assembler uses the
more-readable operands “,w” and “,f” to specify the destination register. The W register is selected as
the destination when using the “,w” operand, and the file register is selected when using the “,f” operand
or if no destination operand is specified. The case of the letter in the destination operand in not
important. The Microchip numerical operands cannot be used with the HI-TECH PICC Lite assembler.

In addition to the above, the format used to specify different radix numbers differs between the
Microchip assembler and the PICC Lite assembler. See Table 6 - 2 for details on what the PICC Lite
assembler accepts.

6.3.3 Character Set

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not
opcodes and reserved words. Tabs are treated as equivalent to spaces.

6.3.4 Constants

6.3.4.1 Numeric Constants
The assembler performs all arithmetic as signed 32 bit. Errors will be caused if a quantity is too large to
fit in a memory location. The default radix for all numbers is 10. Other radices may be specified by a
trailing base specifier as given in Table 6 - 2.

Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from identifiers.
Hexadecimal constants are accepted in either upper or lower case.

Note that a binary constant must have an upper case B following it, as a lower case b is used for
temporary (numeric) label backward references.
156

PIC Assembly Language

 6
In expressions, real numbers are accepted in the usual format, and are interpreted as IEEE 32-bit format.
A real number may be converted into the truncated IEEE 24-bit format by using the float24 pseudo-
function. Here is an example of its use:

movlw low(float24(31.415926590000002))

6.3.4.2 Character Constants
A character constant is a single character enclosed in single quotes ('). Multi character constants may
be specified using double quotes. See “Strings” on page 160.

6.3.5 Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric characters or the end
of a line.

6.3.6 Special Characters

There are a few characters that are special in certain contexts. Within a macro body, the character & is
used for token concatenation. To use the bitwise & operator within a macro body, escape it by using &&
instead. In a macro argument list, the angle brackets < and > are used to quote macro arguments.

6.3.7 Identifiers

Identifiers are user-defined symbols representing memory locations or numbers. A symbol may contain
any number of characters drawn from the alphabetics, numerics and the special characters dollar ($),
question mark (?) and underscore(_). The first character of an identifier may not be numeric. The case
of alpahabetics is significant, e.g. Fred is not the same symbol as fred. Some examples of identifiers are
shown here:

An_identifier
an_identifier
an_identifier1
$$$
?$_12345

Table 6 - 2 ASPIC Numbers and bases

Radix Format
Binary digits 0 and 1 followed by B
Octal digits 0 to 7 followed by O, Q, o or q
Decimal digits 0 to 9
Hexadecimal digits 0 to 9, A to F preceded by Ox or followed by H or h
HI-TECH PICC Lite compiler 157

PICC Lite Macro Assembler

 6
6.3.7.1 Significance of Identifiers
Users of other assemblers that attempt to implement forms of data typing for identifiers should note that
this assembler attaches no significance to any symbol, and places no restrictions or expectations on the
usage of a symbol. The names of psects (program sections) and ordinary symbols occupy separate,
overlapping name spaces, but other than this, the assembler does not care whether a symbol is used to
represent bytes, words or chicken sheds. No special syntax is needed or provided to define the addresses
of bits or any other data type, nor will the assembler issue any warnings if a symbol is used in more than
one context. The instruction and addressing mode syntax provide all the information necessary for the
assembler to generate correct code.

6.3.7.2 Assembler-Generated Identifiers
Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have the
form ??nnnn where nnnn is a 4 digit number. The user should avoid defining symbols with the same
form.

6.3.7.3 Location Counter
The current location within the active program section is accessible via the symbol $.

6.3.7.4 Register Symbols
The working register (W) is available by using its standard name, and case of the register name is not
significant. Special Function Registers (SFRs) are available using their standard names, as long as they
are already defined. The standard SFRs for each PIC processor are defined in the corresponding header
file.

It is not possible to equate a symbol to a register.

6.3.7.5 Labels
A label is a name at the beginning of a statement which is assigned a value equal to the current offset
within the current psect (program section). There are two types of labels; symbol labels and numeric
labels.

A label is not the same as a macro name, which also appears at the beginning of the line in a macro
declaration.

6.3.7.6 Symbolic Labels
A symbolic label may be any symbol, and may or may not be followed by a colon. Here are two
examples of legitimate labels:

frank

simon44:
158

PIC Assembly Language

 6
Symbols not interpreted in any other way are assumed to be labels. Thus the code:

movlw 23h

bananas

movf 37h

defines a symbol called bananas. Mis-typed assembler instructions can sometimes be treated as labels
without an error message being issued. Indentation of a label does not force the assembler to treat it as
an mnemonic.

6.3.7.7 Numeric Labels
The assembler implements a system of numeric labels (as distinct from the local labels used in macros)
which relieves the programmer from creating new labels within a block of code. A numeric label is a
numeric string followed by a colon, and may be referenced by the same numeric string with either an ‘f’
or ‘b’ suffix.

When used with an ‘f’ suffix, the label reference is the first label with the same number found by looking
forward from the current location, and conversely a ‘b’ will cause the assembler to look backward for
the label.

For example:

_entry_point ; Referenced from somewhere
else
1

.

.

.
decfsz _counter
goto 1b
goto 1f
.
.
.

1 ; End of the function
return
end

Note that even though there are two 1: labels, no ambiguity occurs, since each is referred to uniquely.
The goto 1b refers to a label further back in the source code, while goto 1f refers to a label further
HI-TECH PICC Lite compiler 159

PICC Lite Macro Assembler

 6
forward. In general, to avoid confusion, it is recommended that within a routine you do not duplicate
numeric labels.

6.3.8 Strings

A string is a sequence of characters not including carriage return or newline, enclosed within matching
quotes. Either single (’) or double (") quotes may be used, but the opening and closing quotes must be
the same. A string used as an operand to a DB directive may be any length, but a string used as operand
to an instruction must not exceed 1 or 2 characters, depending on the size of the operand required.

6.3.9 Expressions

Expressions are made up of numbers, symbols, strings and operators. Operators can be unary (one
operand, e.g. not) or binary (two operands, e.g. +). The operators allowable in expressions are listed in
Table 6 - 3. The usual rules governing the syntax of expressions apply.

The operators listed may all be freely combined in both constant and relocatable expressions. The
HI-TECH linker permits relocation of complex expressions, so the results of expressions involving
relocatable identifiers may not be resolved until link time.

6.3.10 Statement Format

Legal statement formats are shown in Table 6 - 4. The second form is only legal with certain directives,
such as MACRO, SET and EQU. The label field is optional and if present should contain one identifier.
The name field is mandatory and should also contain one identifier. Note that a label, if present, may or
may not followed by a colon. There is no limitation on what column or part of the line any part of the
statement should appear in.

6.3.11 Program Sections

Program sections, or psects, are a way of grouping together parts of a program even though the source
code may not be physically adjacent in the source file, or even where spread over several source files.
Unless defined as ABS (absolute), psects are relocatable.

A psect is identified by a name and has several attributes. The psect directive is used to define psects. It
takes as arguments a name and an optional comma-separated list of flags. See the section PSECT on
page 164 for full information. The assembler associates no significance to the name of a psect.

The following is an example showing some executable instructions being placed in the text0 psect, and
some data being placed in the rbss_0 psect.
160

PIC Assembly Language

 6
Table 6 - 3 Operators

Operator Purpose
* Multiplication
+ Addition
- Subtraction
/ Division
= or eq Equality
> or gt Signed greater than
>= or ge Signed greater than or equal to
< or lt Signed less than
<= or le Signed less than or equal to
<> or ne Signed not equal to
low Low byte of operand
high High byte of operand
highword High 16 bits of operand
mod Modulus
& Bitwise AND
^ Bitwise XOR (exclusive or)
| Bitwise OR
not Bitwise complement
<< or shl Shift left
>> or shr Shift right
rol Rotate left
ror Rotate right
seg Segment (bank number) of address
float24 24-bit version of real operand
nul Tests if macro argument is null

Table 6 - 4 ASPIC Statement formats

Format 1: label opcode operands ; comment
Format 2: name pseudo-op operands ; comment
Format 3: ; comment only
HI-TECH PICC Lite compiler 161

PICC Lite Macro Assembler

 6
processor 16C84

psect text0,class=CODE,local,delta=2
adjust
lcall clear_fred
movf flag
btfss 3,2
goto 1f
incf fred
goto 2f

1 decf fred
2

psect rbss_0,class=BANK0,space=1
flag

ds 1
fred

ds 1

psect text0,class=CODE,local,delta=2
clear_fred

clrf fred
bcf status,5
return

Note that even though the two blocks of code in the text0 psect are separated by a block in the rbss_0
psect, the two text0 psect blocks will be contiguous when loaded by the linker. In other words, the
decf fred instruction will fall through to the label clear_fred during execution. The actual
location in memory of the two psects will be determined by the linker. See the linker manual for
information on how psect addresses are determined.

A label defined in a psect is said to be relocatable, that is, its actual memory address is not determined
at assembly time. Note that this does not apply if the label is in the default (unnamed) psect, or in a psect
declared absolute (see the PSECT pseudo-op description below). Any labels declared in an absolute
psect will be absolute, that is their address will be determined by the assembler.

Relocatable expressions may be combined freely in expressions.

6.3.12 Assembler Directives

Assembler directives, or pseudo-ops, are used in a similar way to opcodes, but either do not generate
code, or generate non-executable code, i.e. data bytes. The directives are listed in Table 6 - 5 on page
163, and are detailed below.
162

PIC Assembly Language

 6
Table 6 - 5 ASPIC Directives (pseudo-ops)

Directive Purpose
GLOBAL Make symbols accessible to other modules or allow reference to other modules’

symbols
END End assembly
PSECT Declare or resume program section
ORG Set location counter
EQU Define symbol value
DEFL Define or re-define symbol value
DB Define constant byte(s)
DW Define constant word(s)
DS Reserve storage
IF Conditional assembly
ELSEIF Alternate conditional assembly
ELSE Alternate conditional assembly
ENDIF End conditional assembly
FNADDR Inform linker that a function may be indirectly called
FNARG Inform linker that evaluation of arguments for one function requires calling

another
FNBREAK Break call graph links
FNCALL Inform linker that one function calls another
FNCONF Supply call graph configuration info for linker
FNINDIR Inform linker that all functions with a particular signature may be indirectly called
FNROOT Inform linker that a function is the “root” of a call graph
FNSIZE Inform linker of argument and local variable sizes for a function
MACRO Macro definition
ENDM End macro definition
LOCAL Define local tabs
ALIGN Align output to the specified boundary
PAGESEL Generate set/reset instruction to set PCLATH for this page
PROCESSOR Define the particular chip for which this file is to be assembl.ed.
REPT Repeat a block of code n times
IRP Repeat a block of code with a list
IRPC Repeat a block of code with a character list
SIGNAT Define function signature
HI-TECH PICC Lite compiler 163

PICC Lite Macro Assembler

 6
6.3.12.1 GLOBAL
GLOBAL declares a list of symbols which, if defined within the current module, are made public. If the
symbols are not defined in the current module, it is a reference to symbols in external modules. Example:

GLOBAL lab1,lab2,lab3

6.3.12.2 END
END is optional, but if present should be at the very end of the program. It will terminate the assembly.
If an expression is supplied as an argument, that expression will be used to define the start address of
the program. Whether this is of any use will depend on the linker. Example:

END start_label

6.3.12.3 PSECT
The PSECT directive declares or resumes a program section. It takes as arguments a name and optionally
a comma separated list of flags. The allowed flags are listed in Table 6 - 6 below. Once a psect has been
declared it may be resumed later by simply giving its name as an argument to another psect directive;
the flags need not be repeated.

! ABS defines the current psect as being absolute, i.e. it is to start at location 0. This does not
mean that this module’s contribution to the psect will start at 0, since other modules may
contribute to the same psect.

Table 6 - 6 PSECT flags

Flag Meaning
ABS Psect is absolute
BIT Psect holds bit objects
CLASS Specify class name for psect
DELTA Size of an addressing unit
GLOBAL Psect is global (default)
LIMIT Upper address limit of psect
LOCAL Psect is not global
OVRLD Psect will overlap same psect in other modules
PURE Psect is to be read-only
RELOC Start psect on specified boundary
SIZE Maximum size of psect
SPACE Represents area in which psect will reside
WITH Place psect in the same page as specified psect
164

PIC Assembly Language

 6
! The BIT flag specifies that a psect hold objects that are 1 bit long. Such psects have a scale
value of 8 to indicate that there are 8 addressable units to each byte of storage.

! The CLASS flag specifies a class name for this psect. Class names are used to allow local psects
to be referred to by a class name at link time, since they cannot be referred to by their own name.
Class names are also useful where the linker address range feature is to be used.

! The DELTA flag defines the size of an addressing unit. In other words, the number of bytes
covered for an increment in the address. This should be DELTA=2 for ROM (i.e. a word) and
DELTA=1 (which is the default delta value) for RAM.

! A psect defined as GLOBAL will be combined with other global psects of the same name from
other modules at link time. GLOBAL is the default.

! The LIMIT flag specifies a limit on the highest address to which a psect may extend.

! A psect defined as LOCAL will not be combined with other local psects at link time, even if
there are others with the same name. A local psect may not have the same name as any global
psect, even one in another module.

! A psect defined as OVRLD will have the contribution from each module overlaid, rather than
concatenated at run time. OVRLD in combination with ABS defines a truly absolute psect, i.e.
a psect within which any symbols defined are absolute.

! The PURE flag instructs the linker that this psect will not be modified at run time and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends
on the linker and target system enforcing it.

! The RELOC flag allows specification of a requirement for alignment of the psect on a particular
boundary, e.g. RELOC=100h would specify that this psect must start on an address that is a
multiple of 100h.

! The SIZE flag allows a maximum size to be specified for the psect, e.g. SIZE=100h. This
will be checked by the linker after psects have been combined from all modules.

! The SPACE flag is used to differentiate areas of memory which have overlapping addresses,
but which are distinct. Psects which are positioned in ROM and RAM have a different SPACE
value to indicate that ROM address zero, for example, is a different location to RAM address
zero. Objects in different RAM banks have the same SPACE value as their full addresses
(including bank information) are unique.

! The WITH flag allows a psect to be placed in the same page with a specified psect. For example
WITH=text0 will specify that this psect should be placed in the same page as the text0 psect.

Some examples of the use of the PSECT directive follow:
HI-TECH PICC Lite compiler 165

PICC Lite Macro Assembler

 6
PSECT fred
PSECT bill,size=100h,global
PSECT joh,abs,ovrld,class=CODE,delta=2

6.3.12.4 ORG
ORG changes the value of the location counter within the current psect. This means that the addresses
set with ORG are relative to the base of the psect, which is not determined until link time.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In either
case the current location counter is set to the value of the argument. For example:

ORG 100h

will move the location counter to the beginning of the current psect + 100h. The actual location will not
be known until link time. It is possible to move the location counter backwards.

In order to use the ORG directive to set the location counter to an absolute value, an absolute, overlaid
psect must be used:

psect absdata, abs, ovrld, delta=2
org addr

where addr is an absolute address.

6.3.12.5 EQU
This pseudo-op defines a symbol and equates its value to an expression. For example

thomas EQU 123h

The identifier thomas will be given the value 123h. EQU is legal only when the symbol has not
previously been defined. See also SET on page 166

6.3.12.6 SET
This pseudo-op is equivalent to EQU except that allows a symbol to be re-defined. For example

thomas SET 0h

6.3.12.7 DEFL
DEFL (define label) is identical to EQU except that it may be used to re-define a symbol.

6.3.12.8 DB
DB is used to initialize storage as bytes. The argument is a list of expressions, each of which will be
assembled into one byte. Each character of the string will be assembled into one memory location.
166

PIC Assembly Language

 6
An error will occur if the value of an expression is too big to fit into the memory location, e.g. if the
value 1020 is given as an argument to DB.

Examples:

alabel DB ’X’,1,2,3,4,

Note that because the size of an address unit in ROM is 2 bytes, the DB pseudo-op will initialise a word
with the upper byte set to zero.

6.3.12.9 DW
DW operates in a similar fashion to DB, except that it assembles expressions into words. An error will
occur if the value of an expression is too big to fit into a word.

Example:

DW -1, 3664h, ‘A’, 3777Q

6.3.12.10 DS
This directive reserves, but does not initialize, memory locations. The single argument is the number of
bytes to be reserved. Examples:

alabel: DS 23 ;Reserve 23 bytes of memory
xlabel: DS 2+3 ;Reserve 5 bytes of memory

6.3.12.11 FNADDR
This directive tells the linker that a function has its address taken, and thus could be called indirectly
through a function pointer. For example

FNADDR _func1

tells the linker that func1() has its address taken.

6.3.12.12 FNARG
The directive

FNARG fun1,fun2

tells the linker that evaluation of the arguments to function fun1 involves a call to fun2, thus the memory
argument memory allocated for the two functions should not overlap. For example, the C function calls

fred(var1, bill(), 2);

will generate the assembler directive

FNARG _fred,_bill
HI-TECH PICC Lite compiler 167

PICC Lite Macro Assembler

 6
thereby telling the linker that bill() is called while evaluating the arguments for a call to fred().

6.3.12.13 FNBREAK
This directive is used to break links in the call graph information. The form of this directive is as follows:

FNBREAK fun1,fun2

and is automatically generated when the interrupt_level pragma is used. It states that any calls to
fun1 in trees other than the one rooted at fun2 should not be considered when checking for functions
that appear in multiple call graphs. Fun2() is typically intlevel0 or intlevel1 in compiler-
generated code when the interrupt_level pragma is used. Memory for the auto/parameter area for
a fun1 will only be assigned in the tree rooted at fun2.

6.3.12.14 FNCALL
This directive takes the form:

FNCALL fun1,fun2

FNCALL is usually used in compiler generated code. It tells the linker that function fun1 calls function
fun2. This information is used by the linker when performing call graph analysis. If you write assembler
code which calls a C function, use the FNCALL directive to ensure that your assembler function is taken
into account. For example, if you have an assembler routine called _fred which calls a C routine called
foo(), in your assembler code you should write:

 FNCALL _fred,_foo

6.3.12.15 FNCONF
The FNCONF directive is used to supply the linker with configuration information for a call graph.
FNCONF is written as follows:

 FNCONF psect,auto,args

where psect is the psect containing the call graph, auto is the prefix on all auto variable symbol
names and args is the prefix on all function argument symbol names. This directive normally appears
in only one place: the runtime startoff code used by C compiler generated code. For the HI-TECH PIC
Compiler the PICRT66X.AS routine should include the directive:

 FNCONF rbss,?a,?

telling the linker that the call graph is in the rbss psect, auto variable blocks start with ?a and function
argument blocks start with ?.
168

PIC Assembly Language

 6
6.3.12.16 FNINDIR
 This directive tells the linker that a function performs an indirect call to another function with a
particular signature (see the SIGNAT directive). The linker must assume worst case that the function
could call any other function which has the same signature and has had its address taken (see the
FNADDR directive). For example, if a function called fred() performs an indirect call to a function with
signature 8249, the compiler will produce the directive:

 FNINDIR _fred,8249

6.3.12.17 FNSIZE
 The FNSIZE directive informs the linker of the size of the local variable and argument area associated
with a function. These values are used by the linker when building the call graph and assigning addresses
to the variable and argument areas. This directive takes the form:

 FNSIZE func,local,args

The named function has a local variable area and argument area as specified, for example

 FNSIZE _fred, 10, 5

means the function fred() has 10 bytes of local variables and 5 bytes of arguments. The function name
arguments to any of the call graph associated directives may be local or global. Local functions are of
course defined in the current module, but most be used in the call graph construction in the same manner
as global names.

6.3.12.18 FNROOT
 This directive tells the assembler that a function is a “root function” and thus forms the root of a call
graph. It could either be the C main() function or an interrupt function. For example, the C main module
produce the directive:

 FNROOT _main

6.3.12.19 IF, ELSEIF, ELSE and ENDIF
These directives implement conditional assembly. The argument to IF and ELSEIF should be an
absolute expression. If it is non-zero, then the code following it up to the next matching ELSE will be
assembled. If the expression is zero then the code up to the next matching ELSE will be skipped.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will terminate
the conditional assembly block. Example:

IF ABC
lcall aardvark
ELSEIF DEF
HI-TECH PICC Lite compiler 169

PICC Lite Macro Assembler

 6
lcall denver
ELSE
lcall grapes
ENDIF

In this example, if ABC is non-zero, the first lcall instruction will be assembled but not the second or
third. If ABS is zero and DEF is non-zero, the second lcall will be assembled but the first and third will
not. If both ABS and DEF are zero, the third lcall will be assembled. Conditional assembly blocks may
be nested.

6.3.12.20 MACRO and ENDM
These directives provide for the definition of macros. The MACRO directive should be preceded by the
macro name and optionally followed by a comma separated list of formal parameters. When the macro
is used, the macro name should be used in the same manner as a machine opcode, followed by a list of
arguments to be substituted for the formal parameters.

For example:

;macro: swap
;args: arg1, arg2 - the NUMBERS of the variables to swap
; arg3 - the NAME of the variable to use for temp storage;
;descr: Swaps two specified variables, where the variables
; are named:
; var_x
; and x is a number.
;uses: Uses the w register.

swap macro arg1, arg2, arg3
movf var_&arg1,w
movwf arg3
movf var_&arg2,w
movwf var_&arg1
movf arg3,w
movwf var_&arg2
endm

When used, this macro will expand to the 3 instructions in the body of the macro, with the formal
parameters substituted by the arguments. Thus:

swap 2,4,tempvar

expands to:
170

PIC Assembly Language

 6
movf var_2,w
movwf tempvar
movf var_4,w
movwf var_2
movf tempvar,w
movwf var_4

A point to note in the above example: the & character is used to permit the concatenation of macro
parameters with other text, but is removed in the actual expansion. The NUL operator may be used within
a macro to test a macro argument, for example:

if nul arg3 ; argument was not supplied.

...

else ; argument was supplied

...

endif

A comment may be suppressed within the expansion of a macro (thus saving space in the macro storage)
by opening the comment with a double semicolon (;;).

6.3.12.21 LOCAL
The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted for
them when the macro is expanded. For example:

down macro count
local more
movlw count
movwf tempvar

more decfsz tempvar
goto more
endm

when expanded will include a unique assembler generated label in place of more. For example:

down 4

expands to:
HI-TECH PICC Lite compiler 171

PICC Lite Macro Assembler

 6
 movlw 4
 movwf tempvar
??0001 decfsz tempvar
 goto ??0001

if invoked a second time, the label more would expand to ??0002.

6.3.12.22 ALIGN
The ALIGN directive aligns whatever is following, data storage or code etc., to the specified boundary
in the psect in which the directive is found. The boundary is specified by a number following the
directive and is a number of bytes. For example, to align output to a 2 byte (even) address within a psect,
the following could be used.

ALIGN 2

Note, however, that what follows will only begin on an even absolute address if the psect begins on an
even address. The ALIGN directive can also be used to ensure that a psect’s length is a multiple of a
certain number. For example, if the above ALIGN directive was placed at the end of a psect, the psect
would have a length that was always an even number of bytes long.

6.3.12.23 REPT
The REPT directive temporarily defines an unnamed macro then expands it a number of times as
determined by its argument. For example:

rept 3
addwf fred, fred
andwf fred, w
endm

will expand to

addwf fred, fred
andwf fred, w
addwf fred, fred
andwf fred, w
addwf fred, fred
andwf fred, w

6.3.12.24 IRP and IRPC
The IRP and IRPC directives operate similarly to REPT. However, instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case of IRP the
172

PIC Assembly Language

 6
list is a conventional macro argument list, in the case or IRPC it is each character in one argument. For
each repetition the argument is substituted for one formal parameter.

For example:

psect idata_0

irp number,4865h,6C6Ch,6F00h
dw number
endm

psect text0

would expand to:

psect idata_0

dw 4865h
dw 6C6Ch
dw 6F00h

psect text0

Note that you can use local labels and angle brackets in the same manner as with conventional macros.

The IRPC directive is similar, except it substitutes one character at a time from a string of non-space
characters.

For example:

psect idata_0

irpc char,ABC
dw ’char’
endm

psect text0

will expand to:

psect idata_0

dw ’A’
HI-TECH PICC Lite compiler 173

PICC Lite Macro Assembler

 6
dw ’B’
dw ’C’

psect text0

6.3.12.25 PAGESEL
It’s sometimes necessary to set the current PCLATH bits so that a goto will jump to a location in the
current page of ROM. The LJMP and FCALL instructions automatically generate the necessary code to
set or reset the PCLATH bits, but at other times an explicit directive PAGESEL is used, e.g.

PAGESEL $

6.3.12.26 PROCESSOR
The output of the assembler depends on which chip it is desired to assemble for. This can be set on the
command line, or with this directive, e.g.

PROCESSOR 16C84

6.3.12.27 SIGNAT
This directive is used to associate a 16-bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not. The
SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of function
prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from C. For
example:

SIGNAT _fred,8192

will associate the signature value 8192 with symbol _fred. If a different signature value for _fred is
present in any object file, the linker will report an error.

6.3.13 Macro Invocations

When invoking a macro, the argument list must be comma separated. If it is desired to include a comma
(or other delimiter such as a space) in an argument then angle brackets (< and >) may be used to quote
the argument. In addition the exclamation mark (!) may be used to quote a single character. The
character immediately following the exclamation mark will be passed into the macro argument even if
it is normally a comment indicator.

If an argument is preceded by a percent sign (%), that argument will be evaluated as an expression and
passed as a decimal number, rather than as a string. This is useful if evaluation of the argument inside
the macro body would yield a different result.
174

PIC Assembly Language

 6
6.3.14 Assembler Controls

Assembler controls may be included in the assembler source to control such things as listing format.
These keywords have no significance anywhere else in the program. Some keywords are followed by
one or more parameters.

A list of keywords is given in Table 6 - 7, and each is described further below.

Please note that most of these controls require opt to be prepended to the keyword.

6.3.14.1 COND
Any conditional code will be included in the listing output. See also the NOCOND control.

6.3.14.2 GEN
When GEN is in effect, the code generated by macro expansions will appear in the listing output. See
also the NOGEN control.

6.3.14.3 INCLUDE
This control causes the file specified by pathname to be textually included at that point in the assembly
file. The INCLUDE control must be the last control keyword on the line.

Table 6 - 7 ASPIC Assembler controls

Controla

a.The default options are listed with an asterix (*).

Meaning Format
COND* Include conditional code in the list-

ing
opt cond

GEN Expand macros in the listing output opt gen

INCLUDE Textually include another source file include <pathname>

LIST* Define options for listing output opt list [<listopt>, ...,
<listopt>]

NOCOND Leave conditional code out of the
listing

opt nocond

NOGEN* Disable macro expansion opt nogen

NOLIST Disable listing output nolist

TITLE Specify the title of the program opt title “<title>”

SUBTITLE Specify the subtitle of the program opt subtitle “<subtitle>”

PAGELENGTH Specify the length of the listing form opt pagelength <n>

PAGEWIDTH Allows the listing line width to be
set

opt pagewidth <n>
HI-TECH PICC Lite compiler 175

PICC Lite Macro Assembler

 6
6.3.14.4 LIST
If the listing was previously turned off using the NOLIST control, the LIST control on its own will turn
the listing on.

Alternatively, the LIST control may includes options to control the assembly and the listing. The
options are listed in Table 6 - 8. See also the NOLIST control.

6.3.14.5 NOCOND
Any conditional code will not be included in the listing output. See also the COND control.

6.3.14.6 NOGEN
NOGEN disables macro expansion in the listing file. The macro call will be listed instead. See also the
GEN control.

6.3.14.7 NOLIST
This control turns the listing output off from this point onwards. See also the LIST control.

6.3.14.8 TITLE
This control keyword defines a title to appear at the top of every listing page. The string should be
enclosed in single or double quotes. See also the SUBTITLE control.

6.3.14.9 PAGELENGTH
This control keyword specifies the length of the listing form. The default is 66 (11 inches at 6 lines per
inch).

6.3.14.10 PAGEWIDTH
PAGEWIDTH allows the listing line width to be set.

Table 6 - 8 LIST Control Options

List Option Default Description
c=nnn 80 Set the page (i.e. column) width.
n=nnn 59 Set the page length.
t=ON|OFF OFF Truncate listing output lines. The default

wraps lines.
p=<processor> n/a Set the processor type.
r=<radix> hex Set the default radix to hex, dec or oct.
x=ON|OFF OFF Turn macro expansion on or off.
176

PIC Assembly Language

 6
6.3.14.11 SUBTITLE
SUBTITLE defines a subtitle to appear at the top of every listing page, but under the title. The string
should be enclosed in single or double quotes. See also the TITLE control.
HI-TECH PICC Lite compiler 177

PICC Lite Macro Assembler

 6
178

 7
Linker and Utilities Reference Manual

7.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C source
files. This means that a program may be divided into several source files, each of which may be kept to
a manageable size for ease of editing and compilation, then each source file may be compiled separately
and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most instances
it will not be necessary to use the linker directly, as the compiler drivers (HI-TIDE, HPD or command
line) will automatically invoke the linker with all necessary arguments. Using the linker directly is not
simple, and should be attempted only by those with a sound knowledge of the compiler and linking in
general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker arguments
constructed by the compiler driver, and modify them as appropriate. This will ensure that the necessary
startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for several
different processors. Not all features described in this chapter are applicable to all compilers.

7.2 Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The object files
are said to be relocatable since the files have sufficient information in them so that any references to
program or data addresses (e.g. the address of a function) within the file may be adjusted according to
where the file is ultimately located in memory after the linkage process. Thus the file is said to be
relocatable. Relocation may take two basic forms; relocation by name, i.e. relocation by the ultimate
value of a global symbol, or relocation by psect, i.e. relocation by the base address of a particular section
of code, for example the section of code containing the actual executable instructions.

7.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which will
be referred to as psects. These psects represent logical groupings of certain types of code bytes in the
program. In general the compiler will produce code in three basic types of psects, although there will be
several different types of each. The three basic kinds are text psects, containing executable code, data
psects, containing initialised data, and bss psects, containing uninitialised but reserved data.
HI-TECH PICC Lite compiler 179

Linker and Utilities Reference Manual

 7
The difference between the data and bss psects may be illustrated by considering two external
variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into the
data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of the
program, thus the second variable will be initialised at run time to zero. The first will however occupy
space in the program file, and will maintain its initialised value of 1 at startup. It is quite possible to
modify the value of a variable in the data psect during execution, however it is better practice not to do
so, since this leads to more consistent use of variables, and allows for restartable and romable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

7.4 Local Psects

Most psects are global, i.e. they are referred to by the same name in all modules, and any reference in
any module to a global psect will refer to the same psect as any other reference. Some psects are local,
which means that they are local to only one module, and will be considered as separate from any other
psect even of the same name in another module. Local psects can only be referred to at link time by a
class name, which is a name associated with one or more psects via the PSECT directive class= in
assembler code. See The Macro Assembler chapter for more information on psect options.

7.5 Global Symbols

The linker handles only symbols which have been declared as GLOBAL to the assembler. The code
generator generates these assembler directives whenever it encounters global C objects. At the C source
level, this means all names which have storage class external and which are not declared as static.
These symbols may be referred to by modules other than the one in which they are defined. It is the
linker's job to match up the definition of a global symbol with the references to it. Other symbols (local
symbols) are passed through the linker to the symbol file, but are not otherwise processed by the linker.

7.6 Link and load addresses

The linker deals with two kinds of addresses; link and load addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which may
or may not be the same as the link address, is the address at which the psect will start within the output
file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly corresponds to
the offset within a segment, while the load address corresponds to the physical address of a segment.
The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is copied
from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that is mapped
from a physical (== load) address to a virtual (== link) address at run time.
180

Operation

 7
The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.

7.7 Operation

A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some way.
Files is one or more object files, and zero or more library names. The options recognised by the linker
are listed in Table 7 - 1 on page 181 and discussed in the following paragraphs.

1. In earlier versions of HI-TECH C the linker was called LINK.EXE

Table 7 - 1 Linker Options

Option Effect
-Aclass=low-high,... Specify address ranges for a class
-Cx Call graph options
-Cpsect=class Specify a class name for a global psect
-Cbaseaddr Produce binary output file based at baseaddr
-Dclass=delta Specify a class delta value
-Dsymfile Produce old-style symbol file
-Eerrfile Write error messages to errfile
-F Produce .obj file with only symbol records
-Gspec Specify calculation for segment selectors
-Hsymfile Generate symbol file
-H+symfile Generate enhanced symbol file
-I Ignore undefined symbols
-Jnum Set maximum number of errors before aborting
-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items in .obj file
-LM Preserve segment relocation items in .obj file
-N Sort symbol table in map file by address order
-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file
HI-TECH PICC Lite compiler 181

Linker and Utilities Reference Manual

 7
7.7.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a hex
number, a trailing “H” should be added, e.g. 765FH will be treated as a hex number.

7.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a -P option (see below) but sometimes
it is desired to have a class of psects linked into more than one non-contiguous address range. This option
allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the class CODE is to be linked into the given address ranges. Note that a contribution to a
psect from one module cannot be split, but the linker will attempt to pack each block from each module
into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a repeat
count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though the
ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
character “x” or “*” after a range, followed by a count.

-Ooutfile Specify name of output file
-Pspec Specify psect addresses and ordering
-Qprocessor Specify the processor type (for cosmetic reasons only)
-S Inhibit listing of symbols in symbol file
-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter symbol in table as undefined
-Vavmap Use file avmap to generate an Avocet format symbol file
-Wwarnlev Set warning level (-10 to 10)
-Wwidth Set map file width (>10)
-X Remove any local symbols from the symbol file
-Z Remove trivial local symbols from symbol file

Table 7 - 1 Linker Options

Option Effect
182

Operation

 7
7.7.3 -Cx

These options allow control over the call graph information which may be included in the map file
produced by the linker. The -CN option removes the call graph information from the map file. The -CC
option only include the critical paths of the call graph. A function call that is marked with a “*” in a full
call graph is on a critical path and only these calls are included when the -CC option is used. A call graph
is only produced for processors and memory models that use a compiled stack.

7.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on the
command line since classes are specified in object files.

7.7.5 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to be defined. The
delta value should be a number and represents the number of bytes per addressable unit of objects within
the psects. Most psects do not need this option as they are defined with a delta value.

7.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where each
line has the link address of the symbol followed by the symbol name.

7.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

7.7.8 -F

Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used again
in a subsequent linker run to supply symbol values. The -F option will suppress data and code bytes
from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program is
contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the files
for the other device. The process can then be repeated for the other files and device.
HI-TECH PICC Lite compiler 183

Linker and Utilities Reference Manual

 7
7.7.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker can
assign segment addresses, or selectors, to each segment. A segment is defined as a contiguous group of
psects where each psect in sequence has both its link and load address concatenated with the previous
psect in the group. The segment address or selector for the segment is the value derived when a segment
type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the segment by
the relocation quantum of the segment, which is based on the reloc= directive value given to psects at
the assembler level. This is appropriate for 8086 real mode code, but not for protected mode or some
bank-switched arrangements. In this instance the -G option is used to specify a method for calculating
the segment selector. The argument to -G is a string similar to:

A/10h-4h

where A represents the load address of the segment and / represents division. This means "Take the load
address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substituting N for
A, * for / (to represent multiplication), and adding rather than subtracting a constant. The token N is
replaced by the ordinal number of the segment, which is allocated by the linker. For example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number of
segments defined. This would be appropriate when compiling for 80286 protected mode, where these
selectors would represent LDT entries.

7.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argument symfile specifies
a file to receive the symbol file. The default file name is l.sym.

7.7.11 -H+symfile

This option will instruct the linker to generate an enhanced symbol file, which provides, in addition to
the standard symbol file, class names associated with each symbol and a segments section which lists
each class name and the range of memory it occupies. This format is recommended if the code is to be
run in conjunction with a debugger. The optional argument symfile specifies a file to receive the
symbol file. The default file name is l.sym.

7.7.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings). The
default number is 10, but the -J option allows this to be altered.
184

Operation

 7
7.7.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter areas
in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature can be
disabled with this option.

7.7.14 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will cause
undefined symbols to be treated as warnings instead.

7.7.15 -L

When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation" of the program will be done at load
time, e.g. when running a .exe file under DOS or a .prg file under TOS. This requires that some
information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

7.7.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generating .exe files to run under DOS.

7.7.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if the
file name is omitted. The format of the map file is illustrated in Section 7.9 on page 189.

7.7.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. The -N option will cause it to be
sorted numerically, based on the value of the symbol. The -Ns and -Nc options work similarly except
that the symbols are grouped by either their space value, or class.

7.7.19 -Ooutfile

This option allows specification of an output file name for the linker. The default output file name is
l.obj. Use of this option will override the default.

7.7.20 -Pspec

Psects are linked together and assigned addresses based on information supplied to the linker via -P
options. The argument to the -P option consists basically of comma-separated sequences thus:
HI-TECH PICC Lite compiler 185

Linker and Utilities Reference Manual

 7
-Ppsect=lnkaddr+min/ldaddr+min,psect=lnkaddr/ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load addresses,
and a minimum value. All values may be omitted, in which case a default will apply, depending on
previous values.

The minimum value, min, is preceded by a + sign, if present. It sets a minimum value for the link or load
address. The address will be calculated as described below, but if it is less than the minimum then it will
be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects or
classes, or special tokens. If the link address is a negative number, the psect is linked in reverse order
with the top of the psect appearing at the specified address minus one. Psects following a negative
address will be placed before the first psect in memory. If a link address is omitted, the psect's link
address will be derived from the top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). The data psect
will be linked (and loaded) at an address which is 100 hex plus the length of the text psect, rounded up
as necessary if the data psect has a reloc= value associated with it. Similarly, the bss psect will
concatenate with the data psect. Again:

-Ptext=-100h,data,bss

will link in assending order bss, data then text with the top of text appearing at address 0ffh.

If the load address is omitted entirely, it defaults to the same as the link address. If the slash “/” character
is supplied, but no address is supplied after it, the load address will concatenate with the previous psect,
e.g.

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero, text will have a load address of 0, and data
will have a load address starting after the end of text. The bss psect will concatenate with data for both
link and load addresses.

The load address may be replaced with a dot “.” character. This tells the linker to set the load address
of this psect to the same as its link address. The link or load address may also be the name of another
(already linked) psect. This will explicitly concatenate the current psect with the previously specified
psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap
186

Operation

 7
This example shows text at zero, data linked at 8000h but loaded after text, bss is linked and loaded
at 8000h plus the size of data, and nvram and heap are concatenated with bss. Note here the use of two
-P options. Multiple -P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be used in
place of a link or load address, and space will be found in one of the address ranges. For example:

-ACODE=8000h-BFFEh,E000h-FFFEh
-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated with CODE. If no
sufficiently large space is available, an error will result. Note that in this case the data psect will still be
assembled into one contiguous block, whereas other psects in the class CODE will be distributed into the
address ranges wherever they will fit. This means that if there are two or more psects in class CODE, they
may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from any address
ranges specified with the -A option. This allows a range to be specified with the -A option without
knowing in advance how much of the lower part of the range, for example, will be required for other
psects.

7.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map file.
The argument to this option is a string describing the processor.

7.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced by
the linker. Segment information is still included.

7.7.23 -Sclass=limit[, bound]

A class of psects may have an upper address limit associated with it. The following example places a
limit on the maximum address of the CODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with a limit= flag on a
PSECT directive).

If the bound (boundary) argument is used, the class of psects will start on a multiple of the bound
address. This example places the FARCODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

-SFARCODE=6000h,1000h
HI-TECH PICC Lite compiler 187

Linker and Utilities Reference Manual

 7
7.7.24 -Usymbol

This option will enter the specified symbol into the linker's symbol table as an undefined symbol. This
is useful for linking entirely from libraries, or for linking a module from a library where the ordering has
been arranged so that by default a later module will be linked.

7.7.25 -Vavmap

To produce an Avocet format symbol file, the linker needs to be given a map file to allow it to map psect
names to Avocet memory identifiers. The avmap file will normally be supplied with the compiler, or
created automatically by the compiler driver as required.

7.7.26 -Wnum

The -W option can be used to set the warning level, in the range -9 to 9, or the width of the map file, for
values of num >= 10.

-W9 will suppress all warning messages. -W0 is the default. Setting the warning level to -9 (-W-9) will
give the most comprehensive warning messages.

7.7.27 -X

Local symbols can be suppressed from a symbol file with this option. Global symbols will always appear
in the symbol file.

7.7.28 -Z

Some local symbols are compiler generated and not of interest in debugging. This option will suppress
from the symbol file all local symbols that have the form of a single alphabetic character, followed by a
digit string. The set of letters that can start a trivial symbol is currently "klfLSu". The -Z option will
strip any local symbols starting with one of these letters, and followed by a digit string.

7.8 Invoking the Linker

The linker is called HLINK, and normally resides in the BIN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is generally
useful if the number of arguments to HLINK is large. Even if the list of files is too long to fit on one line,
continuation lines may be included by leaving a backslash “\” at the end of the preceding line. In this
fashion, HLINK commands of almost unlimited length may be issued. For example a link command file
called x.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB
188

Map Files

 7
may be passed to the linker by one of the following:

hlink @x.lnk
hlink <x.lnk

7.9 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned to
symbols within those psects. The sections in the map file are as follows; first is a copy of the command
line used to invoke the linker. This is followed by the version number of the object code in the first file
linked, and the machine type. This is optionally followed by call graph information, depended on the
processor and memory model selected. Then are listed all object files that were linked, along with their
psect information. Libraries are listed, with each module within the library. The TOTALS section
summarises the psects from the object files. The SEGMENTS section summarises major memory
groupings. This will typically show RAM and ROM usage. The segment names are derived from the
name of the first psect in the segment.

Lastly (not shown in the example) is a symbol table, where each global symbol is listed with its
associated psect and link address.

Linker command line:

-z -Mmap -pvectors=00h,text,strings,const,im2vecs -pbaseram=00h \
 -pramstart=08000h,data/im2vecs,bss/.,stack=09000h -pnvram=bss,heap \
 -oC:\TEMP\l.obj C:\HT-Z80\LIB\rtz80-s.obj hello.obj \
 C:\HT-Z80\LIB\z80-sc.lib

Object code version is 2.4
Machine type is Z80

 Name Link Load Length Selector
C:\HT-Z80\LIB\rtz80-s.obj
 vectors 0 0 71
 bss 8000 8000 24
 const FB FB 1 0
 text 72 72 82
hello.obj text F4 F4 7

C:\HT-Z80\LIB\z80-sc.lib
powerup.obj vectors 71 71 1
HI-TECH PICC Lite compiler 189

Linker and Utilities Reference Manual

 7
TOTAL Name Link Load Length
 CLASS CODE
 vectors 0 0 72
 const FB FB 1
 text 72 72 89

 CLASS DATA
 bss 8000 8000 24

SEGMENTS Name Load Length Top Selector

 vectors 000000 0000FC 0000FC 0
 bss 008000 000024 008024 8000

7.9.1 Call Graph Information

A call graph is produced for chip types and memory models that use a compiled stack, rather than a
hardware stack, to facilitate parameter passing between functions and auto variables defined within a
function. When a compiled stack is used, functions are not re-entrant since the function will use a fixed
area of memory for its local objects (parameters/auto variables). A function called foo(), for example,
will use symbols like ?_foo for parameters and ?a_foo for auto variables. Compilers such as the PIC,
6805 and V8 use compiled stacks. The 8051 compiler uses a compiled stack in small and medium
memory models. The call graph shows information relating to the placement of function parameters and
auto variables by the linker. A typical call graph may look something like:

Call graph:

*_main size 0,0 offset 0
_init size 2,3 offset 0

_ports size 2,2 offset 5
* _sprintf size 5,10 offset 0
* _putch

INDIRECT 4194
INDIRECT 4194

_function_2 size 2,2 offset 0
_function size 2,2 offset 5

*_isr->_incr size 2,0 offset 15
190

Map Files

 7
The graph shows the functions called and the memory usage (RAM) of the functions for their own local
objects. In the example above, the symbol _main is associated with the function main(). It is shown at
the far left of the call graph. This indicates that it is the root of a call tree. The run-time code has the
FNROOT assembler directive that specifies this. The size field after the name indicates the number of
parameters and auto variables, respectively. Here, main() takes no parameters and defines no auto
variables. The offset field is the offset at which the function’s parameters and auto variables have been
placed from the beginning of the area of memory used for this purpose. The run-time code contains a
FNCONF directive which tells the compiler in which psect parameters and auto variables should reside.
This memory will be shown in the map file under the name COMMON.

Main() calls a function called init(). This function uses a total of two bytes of parameters (it may be
two objects of type char or one int; that is not important) and has three bytes of auto variables. These
figures are the total of bytes of memory consumed by the function. If the function was passed a two-byte
int, but that was done via a register, then the two bytes would not be included in this total. Since
main() did not use any of the local object memory, the offset of init()’s memory is still at 0.

The function init() itself calls another function called ports(). This function uses two bytes of
parameters and another two bytes of auto variables. Since ports() is called by init(), its local
variables cannot be overlapped with those of init()’s, so the offset is 5, which means that ports()’s
local objects were placed immediately after those of init()’s.

The function main also calls sprintf(). Since the function sprintf is not active at the same time as
init() or ports(), their local objects can be overlapped and the offset is hence set to 0. Sprintf()
calls a function putch(), but this function uses no memory for parameters (the char passed as
argument is apparently done so via a register) or locals, so the size and offset are zero and are not printed.

Main() also calls another function indirectly using a function pointer. This is indicated by the two
INDIRECT entries in the graph. The number following is the signature value of functions that could
potentially be called by the indirect call. This number is calculated from the parameters and return type
of the functions the pointer can indirectly call. The names of any functions that have this signature value
are listed underneath the INDIRECT entries. Their inclusion does not mean that they were called (there
is no way to determine that), but that they could potentially be called.

The last line shows another function whose name is at the far left of the call graph. This implies that this
is the root of another call graph tree. This is an interrupt function which is not called by any code,
but which is automatically invoked when an enabled interrupt occurs. This interrupt routine calls the
function incr(), which is shown shorthand in the graph by the “->” symbol followed by the called
function’s name instead of having that function shown indented on the following line. This is done
whenever the calling function does not takes parameters, nor defines any variables.

Those lines in the graph which are starred “*” are those functions which are on a critical path in terms
of RAM usage. For example, in the above, (main() is a trivial example) consider the function
sprintf(). This uses a large amount of local memory and if you could somehow rewrite it so that it
HI-TECH PICC Lite compiler 191

Linker and Utilities Reference Manual

 7
used less local memory, it would reduce the entire program’s RAM usage. The functions init() and
ports() have had their local memory overlapped with that of sprintf(), so reducing the size of these
functions’ local memory will have no affect on the program’s RAM usage. Their memory usage could
be increased, as long as the total size of the memory used by these two functions did not exceed that of
sprintf(), with no additional memory used by the program. So if you have to reduce the amount of
RAM used by the program, look at those functions that are starred.

If, when searching a call graph, you notice that a function’s parameter and auto areas have been
overlapped (i.e. ?a_foo was placed at the same address as ?_foo, for example), then check to make
sure that you have actually called the function in your program. If the linker has not seen a function
actually called, then it overlaps these areas of memory since that are not needed. This is a consequence
of the linker’s ability to overlap the local memory areas of functions which are not active at the same
time. Once the function is called, unique addresses will be assigned to both the parameters and auto
objects.

If you are writing a routine that calls C code from assembler, you will need to include the appropriate
assembler directives to ensure that the linker sees the C function being called.

7.10 Librarian

The librarian program, LIBR, has the function of combining several object files into a single file known
as a library. The purposes of combining several such object modules are several.

! fewer files to link

! faster access

! uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more symbols
previously known, but not defined, to the linker. Thus modules in a library will be linked only if
required. Since the choice of modules to link is made on the first pass of the linker, and the library is
searched in a linear fashion, it is possible to order the modules in a library to produce special effects
when linking. More will be said about this later.

7.10.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is maintained
a directory of the modules and symbols in the library. Since this directory is smaller than the sum of the
modules, the linker is speeded up when searching a library since it need read only the directory and not
all the modules on the first pass. On the second pass it need read only those modules which are required,
seeking over the others. This all minimises disk I/O when linking.
192

Librarian

 7
It should be noted that the library format is geared exclusively toward object modules, and is not a
general purpose archiving mechanism as is used by some other compiler systems. This has the advantage
that the format may be optimized toward speeding up the linkage process.

7.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:

libr options k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, options is zero or more librarian options which
affect the output of the program. k is a key letter denoting the function requested of the librarian
(replacing, extracting or deleting modules, listing modules or symbols), file.lib is the name of the
library file to be operated on, and file.obj is zero or more object file names.

The librarian options are listed in Table 7 - 2.

The key letters are listed inTable 7 - 3.

When replacing or extracting modules, the file.obj arguments are the names of the modules to be
replaced or extracted. If no such arguments are supplied, all the modules in the library will be replaced
or extracted respectively. Adding a file to a library is performed by requesting the librarian to replace it
in the library. Since it is not present, the module will be appended to the library. If the r key is used and
the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it is an
error not to give any object file names.

Table 7 - 2 Librarian Options

Option Effect
-Pwidth specify page width
-W suppress non-fatal errors

Table 7 - 3 Librarian Key Letter Commands

Key Meaning
r Replace modules
d Delete modules
x Extract modules
m List modules
s List modules with symbols
HI-TECH PICC Lite compiler 193

Linker and Utilities Reference Manual

 7
The m and s key letters will list the named modules and, in the case of the s keyletter, the symbols
defined or referenced within (global symbols only are handled by the librarian). As with the r and x key
letters, an empty list of modules means all the modules in the library.

7.10.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the modules
a.obj, b.obj and c.obj:

libr s file.lib a.obj b.obj c.obj

This command deletes the object modules a.obj, b.obj and 2.obj from the library file.lib:

libr d file.lib a.obj b.obj 2.obj

7.10.4 Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard input if
no command line arguments are given. If the standard input is attached to the console, LIBR will prompt
for input. Multiple line input may be given by using a backslash as a continuation character on the end
of a line. If standard input is redirected from a file, LIBR will take input from the file, without prompting.
For example:

libr
libr> r file.lib 1.obj 2.obj 3.obj \
libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line. The libr>
prompts were printed by LIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input from lib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given to LIBR.

7.10.5 Listing Format

A request to LIBR to list module names will simply produce a list of names, one per line, on standard
output. The s keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letter D or U, representing a definition or reference to the symbol
respectively. The -P option may be used to determine the width of the paper for this operation. For
example:

LIBR -P80 s file.lib
194

Objtohex

 7
will list all modules in file.lib with their global symbols, with the output formatted for an 80 column
printer or display.

7.10.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the command
line. When updating a library the order of the modules is preserved. Any new modules added to a library
after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module which
references a symbol defined in another module in the same library, the module defining the symbol
should come after the module referencing the symbol.

7.10.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unless the -W option was used. In this case all
warning messages will be suppressed.

7.11 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility program OBJTOHEX. This allows conversion of
object files as produced by the linker into a variety of different formats, including various hex formats.
The program is invoked thus:

objtohex options inputfile outputfile

All of the arguments are optional. If outputfile is omitted it defaults to l.hex or l.bin depending
on whether the -b option is used. The inputfile defaults to l.obj.

The options for OBJTOHEX are listed in Table 7 - 4 on page 196. Where an address is required, the format
is the same as for HLINK:.

7.11.1 Checksum Specifications

The checksum specification allows automated checksum calculation. The checksum specification takes
the form of several lines, each line describing one checksum. The syntax of a checksum line is:

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are hex numbers, without the usual H suffix. Such
a specification says that the bytes at addr1 through to addr2 inclusive should be summed and the sum
placed in the locations where1 through where2 inclusive. For an 8 bit checksum these two addresses
should be the same. For a checksum stored low byte first, where1 should be less than where2, and vice
HI-TECH PICC Lite compiler 195

Linker and Utilities Reference Manual

 7
versa. The +offset is optional, but if supplied, the value offset will be used to initialise the checksum.
Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit checksum
will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH to provide
protection against an all zero ROM, or a ROM misplaced in memory. A run time check of this checksum
would add the last address of the ROM being checksummed into the checksum. For the ROM in
question, this should be 1FFFH. The initialization value may, however, be used in any desired fashion.

7.12 Cref

The cross reference list utility CREF is used to format raw cross-reference information produced by the
compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the -CR
option to the compiler. The assembler will generate a raw cross-reference file with a -C option (most
assemblers) or by using an OPT CRE directive (6800 series assemblers) or a XREF control line (PIC
assembler). The general form of the CREF command is:

Table 7 - 4 Objtohex Options

Option Meaning
-A Produce an ATDOS .atx output file
-Bbase Produce a binary file with offset of base. Default file name is l.obj
-Cckfile Read a list of checksum specifications from ckfile or standard input
-D Produce a COD file
-E Produce an MS-DOS .exe file
-Ffill Fill unused memory with words of value fill - default value is 0FFh
-I Produce an Intel HEX file with linear addressed extended records.
-L Pass relocation information into the output file (used with .exe files)
-M Produce a Motorola HEX file (S19, S28 or S37 format)
-N Produce an output file for Minix
-Pstk Produce an output file for an Atari ST, with optional stack size
-R Include relocation information in the output file
-Sfile Write a symbol file into file
-T Produce a Tektronix HEX file. -TE produces an extended TekHEX file.
-U Produce a COFF output file
-UB Produce a UBROF format file
-V Reverse the order of words and long words in the output file
-x Create an x.out format file
196

Cref

 7
cref options files

where options is zero or more options as described below and files is one or more raw cross-
reference files. CREF takes the options listed in Table 7 - 5 on page 197. Each option is described in more

detail in the following paragraphs.

7.12.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The -F option allows specification of a path name prefix that will be used to
exclude any symbols defined in a file whose path name begins with that prefix. For example, -F\ will
exclude any symbols from all files with a path name starting with \.

7.12.2 -Hheading

The -H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

7.12.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be printed
on 55 line paper you would use a -L55 option. The default is 66 lines.

7.12.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard output
and may be redirected in the usual manner. Alternatively outfile may be specified as the output file
name.

Table 7 - 5 Cref Options

Option Meaning
-Fprefix Exclude symbols from files with a pathname or

filename starting with prefix
-Hheading Specify a heading for the listing file
-Llen Specify the page length for the listing file
-Ooutfile Specify the name of the listing file
-Pwidth Set the listing width
-Sstoplist Read file stoplist and ignore any symbols listed.
-Xprefix Exclude any symbols starting with the given prefix
HI-TECH PICC Lite compiler 197

Linker and Utilities Reference Manual

 7
7.12.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g. -P132 will
format the listing for a 132 column printer. The default is 80 columns.

7.12.6 -Sstoplist

The -S option should have as its argument the name of a file containing a list of symbols not to be listed
in the cross-reference. Multiple stoplists may be supplied with multiple -S options.

7.12.7 -Xprefix

The -X option allows the exclusion of symbols from the listing, based on a prefix given as argument to
-X. For example if it was desired to exclude all symbols starting with the character sequence xyz then
the option -Xxyz would be used. If a digit appears in the character sequence then this will match any
digit in the symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed by a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied by
invoking CREF with no arguments and typing the command line in response to the cref> prompt. A
backslash at the end of the line will be interpreted to mean that more command lines follow.

7.13 Cromwell

The CROMWELL utility converts code and symbol files into different formats. The formats available are
shown in Table 7 - 6.

The general form of the CROMWELL command is:

Table 7 - 6 Format Types

Key Format
cod Bytecraft COD file
coff COFF file format
elf ELF/DWARF file
eomf51 Extended OMF-51 format
hitech HI-TECH Software format
icoff ICOFF file format
ihex Intel HEX file format
omf51 OMF-51 file format
pe P&E file format
s19 Motorola HEX file format
198

Cromwell

 7
cromwell options input_files -okey output_file

where options can be any of the options shown in Table 7 - 7. Output_file (optional) is the name
of the output file. The input_files are typically the HEX and SYM file. CROMWELL automatically
searches for the SDB files and reads those if they are found. The options are further described in the
following paragraphs.

7.13.1 -Pname

The -P options takes a string which is the name of the processor used. CROMWELL may use this in the
generation of the output format selected.

7.13.2 -D

The -D option is used to display to the screen details about the named input file in a readable format.

The input file can be one of the file types as shown in Table 7 - 6.

7.13.3 -C

This option will attempt to identify if the specified input files are one of the formats as shown in Table
7 - 6. If the file is recognised, a confirmation of its type will be displayed.

Table 7 - 7 Cromwell Options

Option Description
-Pname Processor name
-D Dump input file
-C Identify input files only
-F Fake local symbols as globals
-Okey Set the output format
-Ikey Set the input format
-L List the available formats
-E Strip file extensions
-B Specify big-endian byte ordering
-M Strip underscore character
-V Verbose mode
HI-TECH PICC Lite compiler 199

Linker and Utilities Reference Manual

 7
7.13.4 -F

When generating a COD file, this option can be used to force all local symbols to be represented as
global symbols. The may be useful where an emulator cannot read local symbol information from the
COD file.

7.13.5 -Okey

This option specifies the format of the output file. The key can be any of the types listed in Table 7 - 6.

7.13.6 -Ikey

This option can be used to specify the default input file format. The key can be any of the types listed
in Table 7 - 6.

7.13.7 -L

Use this option to show what file format types are supported. A list similar to that given in Table 7 - 6
will be shown.

7.13.8 -E

Use this option to tell CROMWELL to ignore any filename extensions that were given. The default
extension will be used instead.

7.13.9 -B

In formats that support different endian types, use this option to specify big-endian byte ordering.

7.13.10 -M

When generating COD files this option will remove the preceeding underscore character from symbols.

7.13.11 -V

Turns on verbose mode which will display information about operations CROMWELL is performing.

7.14 Memmap

MEMMAP has been individualized for each processor. The MEMMAP program that appears in your BIN
directory will conform with the following criteria; XXmap.exe where XX stands for the processor type.
From here on, we will be referring to this application as MEMMAP, as to cover all processors.

At the end of compilation and linking, HPD and the command line compiler produce a summary of
memory usage. If, however, the compilation is performed in separate stages and the linker is invoked
explicitly, this memory information is not displayed. The MEMMAP program reads the information stored
200

Memmap

 7
in the map file and produces either a summary of psect address allocation or a memory map of program
sections similar to that shown by HPD and the command line compiler.

7.14.1 Using MEMMAP

A command to the memory usage program takes the form:

memmap options file

Options is zero or more MEMMAP options which are listed in Table 7 - 8 on page 201. File is the name

of a map file. Only one map file can be processed by MEMMAP.

7.14.1.1 -P

The default behaviour of MEMMAP is to produce a segment memory map. This output is similar to that
printed by HPD and the command line compiler after compilation and linking. This behaviour can be
changed by using the -P option. This forces a psect usage map to be printed. The output in this case will
be similar to that shown by the HPD’s Memory Usage Map item under the Utility menu or if the -
PSECTMAP option is used with the command line compiler.

7.14.1.2 -Wwid

The width to which addresses are printed can be adjusted by using the -W option. The default width is
determined in respect to the processor’s address range. Depending on the type of processor used,
determines the default width of the printed address, for example a processor with less than or equal to
64k will have a default width of 4. Whereas a processor with greater than 64k may have a default value
of 6 digits.

Table 7 - 8 Memmap options

Option Effect
-P Print psect usage map
-Wwid Specifies width to which address are printed
HI-TECH PICC Lite compiler 201

 7
202

 8
Error Messages

This chapter lists all possible error messages from the HI-TECH C compiler, with an explanation of each
one. The name of the applications that could have produced the error are listed in brackets opposite the
error message. The tutorial chapter describes the function of each application.

’.’ expected after ’..’ (Parser)
The only context in which two successive dots may appear is as part of the ellipsis symbol, which must
have 3 dots.

’case’ not in switch (Parser)
A case statement has been encountered but there is no enclosing switch statement. A case statement may
only appear inside the body of a switch statement.

’default’ not in switch (Parser)
A label has been encountered called "default" but it is not enclosed by a switch statement. The label
"default" is only legal inside the body of a switch statement.

’with=’ flags are cyclic (Assembler)
If Psect A is to be placed ’with’ Psect B, and Psect B is to be placed ’with’ Psect A, there is no hierarchy.
Remove a ’with’ flag from one of the psect declarations.

(expected (Parser)
An opening parenthesis was expected here. This must be the first token after a while, for, if, do or asm
keyword.

) expected (Parser)
A closing parenthesis was expected here. This may indicate you have left out a parenthesis in an
expression, or you have some other syntax error.

*: no match (Preprocessor, Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

, expected (Parser)
A comma was expected here. This probably means you have left out the comma between two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and has
thus been interpreted as an identifier.
HI-TECH PICC Lite compiler 203

Error Messages

 8
-s, too few values specified in * (Preprocessor)
The list of values to the preprocessor -S option is incomplete. This should not happen if the preprocessor
is being invoked by the compiler driver or HPD.

-s, too many values, * unused (Preprocessor)
There were too many values supplied to a -S preprocessor option.

... illegal in non-prototype arg list (Parser)
The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not appear on
its own, nor may it appear after argument names that do not have types.

: expected (Parser)
A colon is missing in a case label, or after the keyword "default". This often occurs when a semicolon
is accidentally typed instead of a colon.

; expected (Parser)
A semicolon is missing here. The semicolon is used as a terminator in many kinds of statements, e.g. do
.. while, return etc.

= expected (Code Generator, Assembler)
An equal sign was expected here.

#define syntax error (Preprocessor)
A macro definition has a syntax error. This could be due to a macro or formal parameter name that does
not start with a letter or a missing closing parenthesis (’)’).

#elif may not follow #else (Preprocessor)
If a #else has been used after #if, you cannot then use a #elif in the same conditional block.

#elif must be in an #if (Preprocessor)
#elif must be preceded by a matching #if line. If there is an apparently corresponding #if line, check for
things like extra #endif’s, or improperly terminated comments.

#else may not follow #else (Preprocessor)
There can be only one #else corresponding to each #if.

#else must be in an #if (Preprocessor)
#else can only be used after a matching #if.

#endif must be in an #if (Preprocessor)
There must be a matching #if for each #endif. Check for the correct number of #ifs.

#error: * (Preprocessor)
This is a programmer generated error; there is a directive causing a deliberate error. This is normally
used to check compile time defines etc.
204

 8
#if ... sizeof() syntax error (Preprocessor)
The preprocessor found a syntax error in the argument to sizeof, in a #if expression. Probable causes are
mismatched parentheses and similar things.

#if ... sizeof: bug, unknown type code * (Preprocessor)
The preprocessor has made an internal error in evaluating a sizeof() expression. Check for a malformed
type specifier.

#if ... sizeof: illegal type combination (Preprocessor)
The preprocessor found an illegal type combination in the argument to sizeof() in a #if expression.
Illegal combinations include such things as "short long int".

#if bug, operand = * (Preprocessor)
The preprocessor has tried to evaluate an expression with an operator it does not understand. This is an
internal error.

#if sizeof() error, no type specified (Preprocessor)
Sizeof() was used in a preprocessor #if expression, but no type was specified. The argument to sizeof()
in a preprocessor expression must be a valid simple type, or pointer to a simple type.

#if sizeof, unknown type * (Preprocessor)
An unknown type was used in a preprocessor sizeof(). The preprocessor can only evaluate sizeof() with
basic types, or pointers to basic types.

#if value stack overflow (Preprocessor)
The preprocessor filled up its expression evaluation stack in a #if expression. Simplify the expression -
it probably contains too many parenthesized subexpressions.

#if, #ifdef, or #ifndef without an argument (Preprocessor)
The preprocessor directives #if, #ifdef and #ifndef must have an argument. The argument to #if should
be an expression, while the argument to #ifdef or #ifndef should be a single name.

#include syntax error (Preprocessor)
The syntax of the filename argument to #include is invalid. The argument to #include must be a valid
file name, either enclosed in double quotes ("") or angle brackets (< >). For example:

#include "afile.h"
 #include <otherfile.h>

Spaces should not be included, and the closing quote or bracket must be present. There should be
nothing else on the line.

#included file * was converted to lower case (Preprocessor)
The #include file name had to be converted to lowercase before it could be opened.
HI-TECH PICC Lite compiler 205

Error Messages

 8
] expected (Parser)
A closing square bracket was expected in an array declaration or an expression using an array index.

{ expected (Parser)
An opening brace was expected here.

} expected (Parser)
A closing brace was expected here.

a macro name cannot also be a label (Assembler)
A label has been found with the same name as a macro. This is not allowed.

a parameter may not be a function (Parser)
A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has been
omitted from the declaration.

a psect may only be in one class (Assembler)
You cannot assign a psect to more than one class. The psect was defined differently at this point than
when it was defined elsewhere.

a psect may only have one ’with’ option (Assembler)
A psect can only be placed ’with’ one other psect.

add_reloc - bad size (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

ambiguous chip type * -> * or * (Driver)
The chip type specified on the command line is not complete and could refer to more than one chip.
Specify the full name of the chip type.

ambiguous format name ’*’ (Cromwell)
The output format specified to Cromwell is ambiguous.

argument * conflicts with prototype (Parser)
The argument specified (argument 1 is the left most argument) of this function declaration does not agree
with a previous prototype for this function.

argument -w* ignored (Linker)
The argument to the linker option -w is out of range. For warning levels, the range is -9 to 9. For the map
file width, the range is greater than or equal to 10.

argument list conflicts with prototype (Parser)
The argument list in a function definition is not the same as a previous prototype for that function. Check
that the number and types of the arguments are all the same.
206

 8
argument redeclared: * (Parser)
The specified argument is declared more than once in the same argument list.

argument too long (Preprocessor, Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

arithmetic overflow in constant expression (Code Generator)
A constant expression has been evaluated by the code generator that has resulted in a value that is too
big for the type of the expression, e.g. trying to store the value 256 in a "char".

array dimension on * ignored (Preprocessor)
An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed.

array dimension redeclared (Parser)
An array dimension has been declared as a different non-zero value from its previous declaration. It is
acceptable to redeclare the size of an array that was previously declared with a zero dimension, but not
otherwise.

array index out of bounds (Parser)
An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array.

assertion (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

assertion failed: * (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

attempt to modify const object (Parser)
Objects declared "const" may not be assigned to or modified in any other way.

auto variable * should not be qualified (Parser)
An auto variable should not have qualifiers such as "near" or "far" associated with it. Its storage class is
implicitly defined by the stack organization.

bad #if ... defined() syntax (Preprocessor)
The defined() pseudo-function in a preprocessor expression requires its argument to be a single name.
The name must start with a letter. It should be enclosed in parentheses.

bad ’-p’ format (Linker)
The "-P" option given to the linker is malformed.
HI-TECH PICC Lite compiler 207

Error Messages

 8
bad -A option: * (Driver)
The format of a -A option to shift the ROM image was not correct. The -A should be immediately
followed by a valid hex number.

bad -a spec: * (Linker)
The format of a -A specification, giving address ranges to the linker, is invalid. The correct format is:

-Aclass=low-high

where class is the name of a psect class, and low and high are hex numbers.

bad -m option: * (Code Generator)
The code generator has been passed a -M option that it does not understand. This should not happen if
it is being invoked by a standard compiler driver.

bad -q option * (Parser)
The first pass of the compiler has been invoked with a -Q option, to specify a type qualifier name, that
is badly formed.

bad arg * to tysize (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad bconfloat - * (Code Generator)
This is an internal code generator error. Contact HI-TECH technical support with full details of the code
that caused this error.

bad bit number (Assembler, Optimiser)
A bit number must be an absolute expression in the range 0-7.

bad bitfield type (Parser)
A bitfield may only have a type of int.

bad character const (Parser, Assembler, Optimiser)
This character constant is badly formed.

bad character constant in expression (Assembler)
The character constant was expected to consist of only one character, but was found to be greater than
one character.

bad character in extended tekhex line * (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad checksum specification (Linker)
A checksum list supplied to the linker is syntatically incorrect.
208

 8
bad combination of flags (Objtohex)
The combination of options supplied to objtohex is invalid.

bad common spec in -p option (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad complex range check (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad complex relocation (Linker)
The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means a corrupted object file.

bad confloat - * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad conval - * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad dimensions (Code Generator)
The code generator has been passed a declaration that results in an array having a zero dimension.

bad dp/nargs in openpar: c = * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad element count expr (Code Generator)
There is an error in the intermediate code. Try re-installing the compiler from the distribution disks, as
this could be caused by a corrupted file.

bad extraspecial * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad format for -p option (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad gn (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad high address in -a spec (Linker)
The high address given in a -A specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad int. code (Code Generator)
The code generator has been passed input that is not syntatically correct.
HI-TECH PICC Lite compiler 209

Error Messages

 8
bad load address in -a spec (Linker)
The load address given in a -A specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad low address in -a spec (Linker)
The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad min (+) format in spec (Linker)
The minimum address specification in the linker’s -p option is badly formatted.

bad mod ’+’ for how = * (Code Generator)
Internal error - Contact HI-TECH.

bad non-zero node in call graph (Linker)
The linker has encountered a top level node in the call graph that is referenced from lower down in the
call graph. This probably means the program has indirect recursion, which is not allowed when using a
compiled stack.

bad object code format (Linker)
The object code format of this object file is invalid. This probably means it is either truncated, corrupted,
or not a HI-TECH object file.

bad op * to revlog (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad op * to swaplog (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad op: "*" (Code Generator)
This is caused by an error in the intermediate code file. You may have run out of disk space for temporary
files.

bad origin format in spec (Linker)
The origin format in a -p option is not a validly formed decimal, octal or hex number. A hex number
must have a trailing H.

bad overrun address in -a spec (Linker)
The overrun address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. Decimal is default.

bad popreg: * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
210

 8
bad pragma * (Code Generator)
The code generator has been passed a "pragma" directive that it does not understand.

bad pushreg: * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad putwsize (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad record type * (Linker)
This indicates that the object file is not a valid HI-TECH object file.

bad relocation type (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad repeat count in -a spec (Linker)
The repeat count given in a -A specification is invalid: it should be a valid decimal number.

bad ret_mask (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad segment fixups (Objtohex)
This is an obscure message from objtohex that is not likely to occur in practice.

bad segspec * (Linker)
The segspec option (-G) to the linker is invalid. The correct form of a segspec option is along the
following lines:

-Gnxc+o

where n stands for the segment number, x is a multiplier symbol, c is a constant (multiplier) and o is a
constant offset. For example the option

-Gnx4+16

would assign segment selectors starting from 16, and incrementing by 4 for each segment, i.e. in the
order 16, 20, 24 etc.

bad size in -s option (Linker)
The size part of a -S option is not a validly formed number. The number must be a decimal, octal or hex
number. A hex number needs a trailing H, and an octal number a trailing O. All others are assumed to
be decimal.

bad size in index_type (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
HI-TECH PICC Lite compiler 211

Error Messages

 8
bad size list (Parser)
The first pass of the compiler has been invoked with a -Z option, specifying sizes of types, that is badly
formed.

bad storage class (Code Generator)
The storage class "auto" may only be used inside a function. A function parameter may not have any
storage class specifier other than "register". If this error is issued by the code generator, it could mean
that the intermediate code file is invalid. This could be caused by running out of disk space.

bad string * in psect pragma (Code Generator)
The code generator has been passed a "pragma psect" directive that has a badly formed string. "Pragma
psect" should be followed by something of the form "oldname=newname".

bad switch size * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad sx (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad u usage (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad uconval - * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad variable syntax (Code Generator)
There is an error in the intermediate code file. This could be caused by running out of disk space for
temporary files.

bad which * after i (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

binary digit expected (Parser)
A binary digit was expected. The format for a binary number is 0Bxxx where xxx is a string containing
zeroes and/or ones, e.g.

0B0110

bit field too large (* bits) (Code Generator)
The maximum number of bits in a bit field is the same as the number of bits in an "int".

bit range check failed * (Linker)
The bit addressing was out of range.
212

 8
bit variables must be global or static (Code Generator)
A bit variable cannot be of type auto. If you require a bit variable with scope local to a block of code or
function, qualify it static.

bitfield comparison out of range (Code Generator)
This is the result of comparing a bitfield with a value when the value is out of range of the bitfield. For
example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range from
0 to 3,

bug: illegal __ macro * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

c= must specify a positive constant (Assembler)
The parameter to the LIST assembler control’s ’C’ option (which sets the column width of the listing
output) must be a positive constant number.

call depth exceeded by * (Linker)
The call graph shows that functions are nested to a depth greater than specified.

can’t allocate memory for arguments (Preprocessor, Parser)
The compiler could not allocate any more memory. Try increasing the size of available memory.

can’t be both far and near (Parser)
It is illegal to qualify a type as both far and near.

can’t be long (Parser)
Only "int" and "float" can be qualified with "long". Thus combinations like "long char" are illegal.

can’t be register (Parser)
Only function parameters or auto (local) variables may be declared "register".

can’t be short (Parser)
Only "int" can be modified with short. Thus combinations like "short float" are illegal.

can’t be unsigned (Parser)
There is no such thing as an unsigned floating point number.

can’t call an interrupt function (Parser)
A function qualified "interrupt" can’t be called from other functions. It can only be called by a hardware
(or software) interrupt. This is because an interrupt function has special function entry and exit code that
is appropriate only for calling from an interrupt. An "interrupt" function can call other non-interrupt
functions.

can’t create * (Code Generator, Assembler, Linker, Optimiser)
The named file could not be created. Check that all directories in the path are present.
HI-TECH PICC Lite compiler 213

Error Messages

 8
can’t create cross reference file * (Assembler)
The cross reference file could not be created. Check that all directories are present. This can also be
caused by the assembler running out of memory.

can’t create temp file (Linker)
The compiler was unable to create a temporary file. Check the DOS Environment variable TEMP (and
TMP) and verify it points to a directory that exists, and that there is space available on that drive. For
example, AUTOEXEC.BAT should have something like:

SET TEMP=C:\TEMP

where the directory C:\TEMP exists.

can’t create temp file * (Code Generator)
The compiler could not create the temporary file named. Check that all the directories in the file path
exist.

can’t enter abs psect (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

can’t find op (Assembler, Optimiser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

can’t find space for psect * in segment * (Linker)
The named psect cannot be placed in the specified segment. This either means that the memory
associated with the segment has been filled, or that the psect cannot be positioned in any of the available
gaps in the memory. Split large functions (for CODE segements) in several smaller functions and ensure
that the optimizers are being used.

can’t generate code for this expression (Code Generator)
This expression is too difficult for the code generator to handle. Try simplifying the expression, e.g.
using a temporary variable to hold an intermediate result.

can’t have ’signed’ and ’unsigned’ together (Parser)
The type modifiers signed and unsigned cannot be used together in the same declaration, as they have
opposite meaning.

can’t have an array of bits or a pointer to bit (Parser)
It is not legal to have an array of bits, or a pointer to bit.

can’t have array of functions (Parser)
You can’t have an array of functions. You can however have an array of pointers to functions. The
correct syntax for an array of pointers to functions is "int (* arrayname[])();". Note that parentheses are
used to associate the star (*) with the array name before the parentheses denoting a function.
214

 8
can’t initialize arg (Parser)
A function argument can’t have an initialiser. The initialisation of the argument happens when the
function is called and a value is provided for the argument by the calling function.

can’t initialize bit type (Code Generator)
Variables of type bit cannot be initialised.

can’t mix proto and non-proto args (Parser)
A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration list
before the start of the function body).

can’t open (Linker)
A file can’t be opened - check spelling.

can’t open * (Code Generator, Assembler, Optimiser, Cromwell)
The named file could not be opened. Check the spelling and the directory path. This can also be caused
by running out of memory.

can’t open * for input (Cref)
Cref cannot open the specified file.

can’t open * for output (Cref)
Cref cannot open the specified file.

can’t open avmap file * (Linker)
A file required for producing Avocet format symbol files is missing. Try re-installing the compiler.

can’t open checksum file * (Linker)
The checksum file specified to objtohex could not be opened. Check spelling etc.

can’t open chip info file * (Assembler)
The chipinfo file (libpicinfo.ini by default) could not be opened. It may have been incorrectly specified.

can’t open command file * (Preprocessor, Linker)
The command file specified could not be opened for reading. Check spelling!

can’t open error file * (Linker)
The error file specified using the -e option could not be opened.

can’t open include file * (Assembler)
The named include file could not be opened. Check spelling. This can also be caused by running out of
memory, or running out of file handles.
HI-TECH PICC Lite compiler 215

Error Messages

 8
can’t open input file * (Preprocessor, Assembler)
The specified input file could not be opened. Check the spelling of the file name.

can’t open output file * (Preprocessor, Assembler)
The specified output file could not be created. This could be because a directory in the path name does
not exist.

can’t reopen * (Parser)
The compiler could not reopen a temporary file it had just created.

can’t seek in * (Linker)
The linker can’t seek in the specified file. Make sure the output file is a valid filename.

can’t take address of register variable (Parser)
A variable declared "register" may not have storage allocated for it in memory, and thus it is illegal to
attempt to take the address of it by applying the "&" operator.

can’t take sizeof func (Parser)
Functions don’t have sizes, so you can’t take use the "sizeof" operator on a function.

can’t take sizeof(bit) (Parser)
You can’t take sizeof a bit value, since it is smaller than a byte.

can’t take this address (Parser)
The expression which was the object of the "&" operator is not one that denotes memory storage ("an
lvalue") and therefore its address can not be defined.

can’t use a string in an #if (Preprocessor)
The preprocessor does not allow the use of strings in #if expressions.

cannot get memory (Linker)
The linker is out of memory! This is unlikely to happen, but removing TSR’s etc. is the cure.

cannot open (Linker)
A file cannot be opened - check spelling.

cannot open include file * (Preprocessor)
The named include file could not be opened for reading by the preprocessor. Check the spelling of the
filename. If it is a standard header file, not in the current directory, then the name should be enclosed in
angle brackets (<>) not quotes.

case 55 on pic17! (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
216

 8
cast type must be scalar or void (Parser)
A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either scalar
(i.e. not an array or a structure) or the type "void".

char const too long (Parser)
A character constant enclosed in single quotes may not contain more than one character.

character not valid at this point in format specifier (Parser)
The printf() style format specifier has an illegal character.

checksum error in intel hex file *, line * (Cromwell)
A checksum error was found at the specified line in the specified Intel hex file. The file may have been
corrupted.

chip name * not found in chipinfo file (Driver)
The chip type specified on the command line was not found in the chipinfo INI file. The compiler
doesn’t know how to compile for this chip. If this is a device not yet supported by the compiler, you
might be able to add the memory specifications to the chipinfo file and try again.

circular indirect definition of symbol * (Linker)
The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

class * memory space redefined: */* (Linker)
A class has been defined in two different memory spaces. Either rename one of the classes or, if they are
the same class, place them in the same memory space.

close error (disk space?) (Parser)
When the compiler closed a temporary file, an error was reported. The most likely cause of this is that
there was insufficient space on disk for the file.

common symbol may not be in absolute psect (Assembler)
If a symbol is defined as common, you cannot place it in a psect which is absolute.

common symbol psect conflict: * (Linker)
A common symbol has been defined to be in more than one psect.

compiler already in use - try again later (Driver)
The driver detected the presence of a lock file that indicates that another instance of the compiler is still
running. If you are running on a network, then there may well be someone else using the compiler, and
you only have a single user licence. If the compiler was not quit properly then this lock file may not have
been deleted. Run the following command:

HPDPIC clear_locks
HI-TECH PICC Lite compiler 217

Error Messages

 8
The argument must be in lower case.

compiler not installed properly - reinstall and try again (Driver)
This is a message from the compiler’s security system. Firstly, to move the compiler from one drive to
another, or even from one directory to another, you must reinstall. You cannot copy the installed
compiler (even backing up and restoring will not work unless you simply restore over the existing files).
If you have reinstalled, then it is possible that you are running an older version of the same compiler still
installed on your machine. Check your PATH environment variable to make sure you’re running what
you think you are, i.e. make sure your PATH specifies the newly installed compiler.

complex relocation not supported for -r or -l options yet (Linker)
The linker was given a -R or -L option with file that contain complex relocation. This is not yet
supported.

conflicting fnconf records (Linker)
This is probably caused by multiple run-time startoff module. Check the linker arguments, or "Object
Files..." in HPD.

constant conditional branch (Code Generator)
A conditional branch (generated by an "if" statement etc.) always follows the same path. This may
indicate an expression with missing or badly placed parentheses, causing the evaluation to yield a value
different to what you expected, or it may be because you have written something like "while(1)". To
produce an infinite loop, use "for(;;)".

constant conditional branch: possible use of = instead of == (Code Generator)
There is an expression inside an if or other conditional construct, where a constant is being assigned to
a variable. This may mean you have inadvertently used an assignment (=) instead of a compare (==).

constant expression required (Parser)
In this context an expression is required that can be evaluated to a constant at compile time.

constant left operand to ? (Code Generator)
The left operand to a conditional operator (?) is constant, thus the result of the tertiary operator ?: will
always be the same.

constant operand to || or && (Code Generator)
One operand to the logical operators || or && is a constant. Check the expression for missing or badly
placed parentheses.

constant relational expression (Code Generator)
There is a relational expression that will always be true or false. This may be because e.g. you are
comparing an unsigned number with a negative value, or comparing a variable with a value greater than
the largest number it can represent.
218

 8
control line * within macro expansion (Preprocessor)
A preprocessor control line (one starting with a #) has been encountered while expanding a macro. This
should not happen.

conversion to shorter data type (Code Generator)
Truncation may occur in this expression as the lvalue is of shorter type than the rvalue.

copyexpr: can’t handle v_rtype = * (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

couldn’t create error file: * (Driver)
The error file specified after the -Efile or -E+file options could not be opened. Check to ensure that the
file or directory is not specified read only.

declaration of * hides outer declaration (Parser)
An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended.

declarator too complex (Parser)
This declarator is too complex for the compiler to handle. Examine the declaration and find a way to
simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

default case redefined (Parser)
There is only allowed to be one "default" label in a switch statement. You have more than one.

degenerate signed comparison (Code Generator)
There is a comparision of a signed value with the most negative value possible for this type, such that
the comparision will always be true or false. E.g. char c;

if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

degenerate unsigned comparison (Code Generator)
There is a comparision of an unsigned value with zero, which will always be true or false. E.g.

unsigned char c;
 if(c >= 0)

will always be true, because an unsigned value can never be less than zero.

delete what ? (Libr)
The librarian requires one or more modules to be listed for deletion when using the ’d’ key.
HI-TECH PICC Lite compiler 219

Error Messages

 8
delta= must specify a positive constant (Assembler)
The parameter to the PSECT assembler directive’s ’DELTA’ option must be a positive constant number.

demo version will only generate * lines of code (Assembler)
The demonstration version of the compiler is limited in the size of the code it will generate. The retail
version has no limitation on the number of lines of code generated.

did not recognize format of input file (Cromwell)
The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E or
HI-TECH.

digit out of range (Parser, Assembler, Optimiser)
A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal number,
or hex digits A-F in a decimal number. An octal number is denoted by the digit string commencing with
a zero, while a hex number starts with "0X" or "0x".

dimension required (Parser)
Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a
value. All succeeding dimensions must be present.

direct range check failed * (Linker)
The direct addressing was out of range.

divide by zero in #if, zero result assumed (Preprocessor)
Inside a #if expression, there is a division by zero which has been treated as yielding zero.

division by zero (Code Generator)
A constant expression that was being evaluated involved a division by zero.

double float argument required (Parser)
The printf format specifier corresponding to this argument is %f or similar, and requires a floating point
expression. Check for missing or extra format specifiers or arguments to printf.

ds argument must be a positive constant (Assembler)
The argument to the DS assembler directive must be a positive constant.

duplicate * for * in chipinfo file at line * (Assembler, Driver)
The chipinfo file (libpicinfo.ini by default) has a processor section with multiple values for the ARCH,
BANKS, INTSAVE, LIB, ROMSIZE, SPAREBIT, START or ZEROREG field. Only one value is
allowed per chip.

duplicate -d or -h flag (Linker)
The a symbol file name has been specified to the linker for a second time.
220

 8
duplicate -m flag (Linker)
The linker only likes to see one -m flag, unless one of them does not specify a file name. Two map file
names are more than it can handle!

duplicate arch for * in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) has a processor section with multiple ARCH values. Only
one ARCH value is allowed.

duplicate banks for * in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) has a processor section with multiple BANKS values. Only
one BANKS value is allowed.

duplicate case label * (Code Generator)
There is more than one case label with this value in a switch statement.

duplicate label * (Parser)
The same name is used for a label more than once in this function. Note that the scope of labels is the
entire function, not just the block that encloses a label.

duplicate lib for * in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) has a processor section with multiple LIB values. Only one
LIB value is allowed.

duplicate qualifier (Parser)
There are two occurrences of the same qualifier in this type specification. This can occur either directly
or through the use of a typedef. Remove the redundant qualifier.

duplicate qualifier key * (Parser)
This qualifier key (given via a -Q option) has been used twice.

duplicate qualifier name * (Parser)
A duplicate qualifier name has been specified to P1 via a -Q option. This should not occur if the standard
compiler drivers are used.

duplicate romsize for * in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) has a processor section with multiple ROMSIZE values.
Only one ROMSIZE value is allowed.

duplicate sparebit for * in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) has a processor section with multiple SPAREBIT values.
Only one SPAREBIT value is allowed.

duplicate zeroreg for * in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) has a processor section with multiple ZEROREG values.
Only one ZEROREG value is allowed.
HI-TECH PICC Lite compiler 221

Error Messages

 8
empty chip info file * (Assembler)
The chipinfo file (libpicinfo.ini by default) contains no data.

end of file within macro argument from line * (Preprocessor)
A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument started.

end of string in format specifier (Parser)
The format specifier for the printf() style function is malformed.

end statement inside include file or macro (Assembler)
An END statement was found inside an include file or a macro.

entry point multiply defined (Linker)
There is more than one entry point defined in the object files given the linker.

enum tag or { expected (Parser)
After the keyword "enum" must come either an identifier that is or will be defined as an enum tag, or an
opening brace.

eof in #asm (Preprocessor)
An end of file has been encountered inside a #asm block. This probably means the #endasm is missing
or misspelt.

eof in comment (Preprocessor)
End of file was encountered inside a comment. Check for a missing closing comment flag.

eof inside conditional (Assembler)
END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

eof inside macro def’n (Assembler)
End-of-file was encountered while processing a macro definition. This means there is a missing "endm"
directive.

eof on string file (Parser)
P1 has encountered an unexpected end-of-file while re-reading its file used to store constant strings
before sorting and merging. This is most probably due to running out of disk space. Check free disk
space.

error closing output file (Code Generator, Optimiser)
The compiler detected an error when closing a file. This most probably means there is insufficient disk
space.

error dumping * (Cromwell)
Either the input file to Cromwell is of an unsupported type or that file cannot be dumped to the screen.
222

 8
error in format string (Parser)
There is an error in the format string here. The string has been interpreted as a printf() style format string,
and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at run time.

evaluation period has expired (Driver)
The evaluation period for this compiler has expired. Contact HI-TECH to purchase a full licence.

expand - bad how (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

expand - bad which (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

expected ’-’ in -a spec (Linker)
There should be a minus sign (-) between the high and low addresses in a -A spec, e.g.

-AROM=1000h-1FFFh

exponent expected (Parser)
A floating point constant must have at least one digit after the "e" or "E".

expression error (Code Generator, Assembler, Optimiser)
There is a syntax error in this expression, OR there is an error in the intermediate code file. This could
be caused by running out of disk space.

expression generates no code (Code Generator)
This expression generates no code. Check for things like leaving off the parentheses in a function call.

expression stack overflow at op * (Preprocessor)
Expressions in #if lines are evaluated using a stack with a size of 128. It is possible for very complex
expressions to overflow this. Simplify the expression.

expression syntax (Parser)
This expression is badly formed and cannot be parsed by the compiler.

expression too complex (Parser)
This expression has caused overflow of the compiler’s internal stack and should be re-arranged or split
into two expressions.

external declaration inside function (Parser)
A function contains an "extern" declaration. This is legal but is invariably A Bad Thing as it restricts the
scope of the function declaration to the function body. This means that if the compiler encounters
another declaration, use or definition of the extern object later in the same file, it will no longer have the
earlier declaration and thus will be unable to check that the declarations are consistent. This can lead to
strange behaviour of your program or signature errors at link time. It will also hide any previous
HI-TECH PICC Lite compiler 223

Error Messages

 8
declarations of the same thing, again subverting the compiler’s type checking. As a general rule, always
declare "extern" variables and functions outside any other functions.

field width not valid at this point (Parser)
A field width may not appear at this point in a printf() type format specifier.

file locking not enabled on network drive (Driver)
The driver has attempted to modify the lock file located in the LIB directory butwas unable to do so.
This has probably resulted fro mthe network drive used to hold the compiler being read only.

file name index out of range in line no. record (Cromwell)
The .COD file has an invalid format in the specified record.

filename work buffer overflow (Preprocessor)
A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

fixup overflow in expression * (Linker)
The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
For example this will occur if a byte size object is initialized with an address that is bigger than 255. This
error occurred in a complex expression.

fixup overflow referencing * (Linker)
The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
For example this will occur if a byte size object is initialized with an address that is bigger than 255.

float param coerced to double (Parser)
Where a non-prototyped function has a parameter declared as "float", the compiler converts this into a
"double float". This is because the default C type conversion conventions provide that when a floating
point number is passed to a non-prototyped function, it will be converted to double. It is important that
the function declaration be consistent with this convention.

form length must be >= 15 (Assembler)
The form length specified using the -Flength option must be at least 15 lines.

formal parameter expected after # (Preprocessor)
The stringization operator # (not to be confused with the leading # used for preprocessor control lines)
must be followed by a formal macro parameter. If you need to stringize a token, you will need to define
a special macro to do it, e.g.

#define __mkstr__(x) #x

then use __mkstr__(token) wherever you need to convert a token into a string.
224

 8
function * appears in multiple call graphs: rooted at * (Linker)
This function can be called from both main line code and interrupt code. Use the reentrant keyword, if
this compiler supports it, or recode to avoid using local variables or parameters, or duplicate the
function.

function * argument evaluation overlapped (Linker)
A function call involves arguments which overlap between two functions. This could occur with a call
like:

void fn1(void) { fn3(7, fn2(3), fn2(9)); /* Offending call */ } char fn2(char fred) { return fred +
fn3(5,1,0); } char fn3(char one, char two, char three) { return one+two+three; }

where fn1 is calling fn3, and two arguments are evaluated by calling fn2, which in turn calls fn3. The
structure should be modified to prevent this.

function * is never called (Linker)
This function is never called. This may not represent a problem, but space could be saved by removing
it. If you believe this function should be called, check your source code.

function body expected (Parser)
Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow.

function declared implicit int (Parser)
Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of type "int", with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type and
arguments will be different from the earlier implicit declaration, causing a compiler error. The solution
is to ensure that all functions are defined or at least declared before use, preferably with prototyped
parameters. If it is necessary to make a forward declaration of a function, it should be preceded with the
keywords "extern" or "static" as appropriate.

function does not take arguments (Parser, Code Generator)
This function has no parameters, but it is called here with one or more arguments.

function is already ’extern’; can’t be ’static’ (Parser)
This function was already declared extern, possibly through an implicit declaration. It has now been
redeclared static, but this redeclaration is invalid. If the problem has arisen because of use before
definition, either move the definition earlier in the file, or place a static forward definition earlier in the
file, e.g. static int fred(void);
HI-TECH PICC Lite compiler 225

Error Messages

 8
function or function pointer required (Parser)
Only a function or function pointer can be the subject of a function call. This error can be produced when
an expression has a syntax error resulting in a variable or expression being followed by an opening
parenthesis ("(") which denotes a function call.

functions can’t return arrays (Parser)
A function can return only a scalar (simple) type or a structure. It cannot return an array.

functions can’t return functions (Parser)
A function cannot return a function. It can return a function pointer. A function returning a pointer to a
function could be declared like this: int (* (name()))(). Note the many parentheses that are necessary to
make the parts of the declaration bind correctly.

functions nested too deep (Code Generator)
This error is unlikely to happen with C code, since C cannot have nested functions!

hex digit expected (Parser)
After "0x" should follow at least one of the hex digits 0-9 and A-F or a-f.

I/O error reading symbol table (Cromwell)
Cromwell could not read the symbol table. This could be because the file was truncated or there was
some other problem reading the file.

ident records do not match (Linker)
The object files passed to the linker do not have matching ident records. This means they are for different
processor types.

identifier expected (Parser)
Inside the braces of an "enum" declaration should be a comma-separated list of identifiers.

identifier redefined: * (Parser)
This identifier has already been defined. It cannot be defined again.

identifier redefined: * (from line *) (Parser)
This identifier has been defined twice. The ’from line’ value is the line number of the first declaration.

illegal # command * (Preprocessor)
The preprocessor has encountered a line starting with #, but which is not followed by a recognized
control keyword. This probably means the keyword has been misspelt. Legal control keywords are:
assert, asm, define, elif, else, endasm, endif, error, if, ifdef, ifndef, include, line, pragma, undef.

illegal #if line (Preprocessor)
There is a syntax error in the expression following #if. Check the expression to ensure it is properly
constructed.
226

 8
illegal #undef argument (Preprocessor)
The argument to #undef must be a valid name. It must start with a letter.

illegal ’#’ directive (Preprocessor, Parser)
The compiler does not understand the "#" directive. It is probably a misspelling of a pre-processor "#"
directive.

illegal character (* decimal) in #if (Preprocessor)
The #if expression had an illegal character. Check the line for correct syntax.

illegal character * (Parser)
This character is illegal.

illegal character * in #if (Preprocessor)
There is a character in a #if expression that has no business being there. Valid characters are the letters,
digits and those comprising the acceptable operators.

illegal conversion (Parser)
This expression implies a conversion between incompatible types, e.g. a conversion of a structure type
into an integer.

illegal conversion between pointer types (Parser)
A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer of a
different type. This will usually mean you have used the wrong variable, but if this is genuinely what
you want to do, use a typecast to inform the compiler that you want the conversion and the warning will
be suppressed.

illegal conversion of integer to pointer (Parser)
An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform the
compiler that you want the conversion and the warning will be suppressed.

illegal conversion of pointer to integer (Parser)
A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you have
used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform the
compiler that you want the conversion and the warning will be suppressed.

illegal flag * (Linker)
This flag is unrecognized.

illegal function qualifier(s) (Parser)
A qualifier such as "const" or "volatile" has been applied to a function. These qualifiers only make sense
when used with an lvalue (i.e. an expression denoting memory storage). Perhaps you left out a star ("*")
indicating that the function should return a pointer to a qualified object.
HI-TECH PICC Lite compiler 227

Error Messages

 8
illegal initialisation (Parser)
You can’t initialise a "typedef" declaration, because it does not reserve any storage that could be
initialised.

illegal instruction for this processor (Assembler)
The instruction is not supported by this processor.

illegal operation on a bit variable (Parser)
Not all operations on bit variables are supported. This operation is one of those.

illegal operator in #if (Preprocessor)
A #if expression has an illegal operator. Check for correct syntax.

illegal or too many -g flags (Linker)
There has been more than one -g option, or the -g option did not have any arguments following. The
arguments specify how the segment addresses are calculated.

illegal or too many -o flags (Linker)
This -o flag is illegal, or another -o option has been encountered. A -o option to the linker must have a
filename. There should be no space between the filename and the -o, e.g. -ofile.obj

illegal or too many -p flags (Linker)
There have been too many -p options passed to the linker, or a -p option was not followed by any
arguments. The arguments of separate -p options may be combined and separated by commas.

illegal record type (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Try recreating the object file.

illegal relocation size: * (Linker)
There is an error in the object code format read by the linker. This either means you are using a linker
that is out of date, or that there is an internal error in the assembler or linker.

illegal relocation type: * (Linker)
An object file contained a relocation record with an illegal relocation type. This probably means the file
is corrupted or not an object file.

illegal switch * (Code Generator, Assembler, Optimiser)
This command line option was not understood.

illegal type for array dimension (Parser)
An array dimension must be either an integral type or an enumerated value.

illegal type for index expression (Parser)
An index expression must be either integral or an enumerated value.
228

 8
illegal type for switch expression (Parser)
A "switch" operation must have an expression that is either an integral type or an enumerated value.

illegal use of void expression (Parser)
A void expression has no value and therefore you can’t use it anywhere an expression with a value is
required, e.g. as an operand to an arithmetic operator.

image too big (Objtohex)
The program image being constructed by objtohex is too big for its virtual memory system.

implicit conversion of float to integer (Parser)
A floating point value has been assigned or otherwise converted to an integral type. This could result in
truncation of the floating point value. A typecast will make this warning go away.

implicit return at end of non-void function (Parser)
A function which has been declared to return a value has an execution path that will allow it to reach the
end of the function body, thus returning without a value. Either insert a return statement with a value, or
if the function is not to return a value, declare it "void".

implict signed to unsigned conversion (Parser)
A signed number is being assigned or otherwise converted to a larger unsigned type. Under the ANSI
"value preserving" rules, this will result in the signed value being first sign-extended to a signed number
the size of the target type, then converted to unsigned (which involves no change in bit pattern). Thus
an unexpected sign extension can occur. To ensure this does not happen, first convert the signed value
to an unsigned equivalent, e.g. if you want to assign a signed char to an unsigned int, first typecast the
char value to "unsigned char".

inappropriate ’else’ (Parser)
An "else" keyword has been encountered that cannot be associated with an "if" statement. This may
mean there is a missing brace or other syntactic error.

inappropriate break/continue (Parser)
A "break" or "continue" statement has been found that is not enclosed in an appropriate control structure.
"continue" can only be used inside a "while", "for" or "do while" loop, while "break" can only be used
inside those loops or a "switch" statement.

include files nested too deep (Assembler)
Macro expansions and include file handling have filled up the assembler’s internal stack. The maximum
number of open macros and include files is 30.

included file * was converted to lower case (Preprocessor)
The file specified to be included was not found, but a file with a lowercase version of the name of the
file specified was found and used instead.
HI-TECH PICC Lite compiler 229

Error Messages

 8
incompatible intermediate code version; should be * (Code Generator)
The intermediate code file produced by P1 is not the correct version for use with this code generator.
This is either that incompatible versions of one or more compilers have been installed in the same
directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the
setting of the TEMP environment variable. If it refers to a long path name, change it to something
shorter.

incomplete * record body: length = * (Linker)
An object file contained a record with an illegal size. This probably means the file is truncated or not an
object file.

incomplete ident record (Libr)
The IDENT record in the object file was incomplete.

incomplete record (Objtohex, Libr)
The object file passed to objtohex or the librarian is corrupted.

incomplete record: * (Linker)
An object code record is incomplete. This is probably due to a corrupted or invalid object module. Re-
compile the source file, watching for out of disk space errors etc.

incomplete record: type = * length = *
This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not a
valid HI-TECH object file, or that it has been truncated, possibly due to running out of disk or RAMdisk
space.

incomplete symbol record (Libr)
The SYM record in the object file was incomplete.

inconsistent lineno tables (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

inconsistent storage class (Parser)
A declaration has conflicting storage classes. Only one storage class should appear in a declaration.

inconsistent symbol tables (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

inconsistent type (Parser)
Only one basic type may appear in a declaration, thus combinations like "int float" are illegal.

initialisation syntax (Parser)
The initialisation of this object is syntactically incorrect. Check for the correct placement and number
of braces and commas.
230

 8
initializer in ’extern’ declaration (Parser)
A declaration containing the keyword "extern" has an initialiser. This overrides the "extern" storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it.

insufficient memory for macro def’n (Assembler)
There is not sufficient memory to store a macro definition.

integer constant expected (Parser)
A colon appearing after a member name in a structure declaration indicates that the member is a bitfield.
An integral constant must appear after the colon to define the number of bits in the bitfield.

integer expression required (Parser)
In an "enum" declaration, values may be assigned to the members, but the expression must evaluate to
a constant of type "int".

integral argument required (Parser)
An integral argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

integral type required (Parser)
This operator requires operands that are of integral type only.

interrupt function * may only have one interrupt level (Code Generator)
Only one interrupt level may be associated with an interrupt function. Check to ensure that only one
interrupt_level pragma has been used with the function specified.

interrupt function requires an address (Code Generator)
The Highend PIC devices support multiple interrupts. An "@ address" is required with the interrupt
definition to indicate with which vector this routine is associated.

interrupt functions not implemented for 12 bit pic (Code Generator)
The 12-bit range of PIC processors do not support interrupts.

interrupt level may only be 0 (default) or 1 (Code Generator)
The only possible interrupt levels are 0 or 1. Check to ensure that all interrupt_level pragmas use these
levels.

interrupt_level should be 0 to 7 (Parser)
The pragma ’interrupt_level’ must have an argument from 0 to 7.

invalid * limits in chipinfo file at line * (Driver)
The ranges of addresses for the ram banks or common memory supplied in the chipinfo INI file is not
valid for architecture specified.
HI-TECH PICC Lite compiler 231

Error Messages

 8
invalid address after ’end’ directive (Assembler)
The start address of the program which is specified after the assembler ’end’ directive must be a label
in the current file.

invalid argument to float24 (Assembler)
An argument to the float24 directive must be a number or a symbol which has been equated to a number.

invalid character (’*’) in number (Assembler)
A number contained a character that was not part of the range 0-9 or 0-F.

invalid disable: * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

invalid format specifier or type modifier (Parser)
The format specifier or modifier in the printf() style string is illegal for this particular format.

invalid hex file: *, line * (Cromwell)
The specified Hex file contains an invalid line.

invalid number syntax (Assembler, Optimiser)
The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other malformed
numbers.

invalid size for fnsize directive (Assembler)
The assembler FNSIZE assembler directive arguments must be positive constants.

inverted common bank in chipinfo file at line * (Assembler, Driver)
The second hex number specified in the COMMON field in the chipinfo file (libpicinfo.ini by default)
must be greater in value than the first.

inverted ICD ROM address in chipinfo file at line * (Driver)
The second hex number specified in the ICD ROM address field in the chipinfo file (libpicinfo.ini by
default) must be greater in value than the first.

inverted ram bank in chipinfo file at line * (Assembler, Driver)
The second hex number specified in the RAM field in the chipinfo file (libpicinfo.ini by default) must
be greater in value than the first.

label identifier expected (Parser)
An identifier denoting a label must appear after "goto".

lexical error (Assembler, Optimiser)
An unrecognized character or token has been seen in the input.
232

 8
library * is badly ordered (Linker)
This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

library file names should have .lib extension: * (Libr)
Use the .lib extension when specifying a library.

line does not have a newline on the end (Parser)
The last line in the file is missing the newline (linefeed, hex 0A) from the end. Some editors will create
such files, which can cause problems for include files. The ANSI C standard requires all source files to
consist of complete lines only.

line too long (Optimiser)
This line is too long. It will not fit into the compiler’s internal buffers. It would require a line over 1000
characters long to do this, so it would normally only occur as a result of macro expansion.

local illegal outside macros (Assembler)
The "LOCAL" directive is only legal inside macros. It defines local labels that will be unique for each
invocation of the macro.

local psect ’*’ conflicts with global psect of same name (Linker)
A local psect may not have the same name as a global psect.

logical type required (Parser)
The expression used as an operand to "if", "while" statements or to boolean operators like ! and && must
be a scalar integral type.

long argument required (Parser)
A long argument is required for this format specifier. Check the number and order of format specifiers
and corresponding arguments.

macro * wasn’t defined (Preprocessor)
A macro name specified in a -U option to the preprocessor was not initially defined, and thus cannot be
undefined.

macro argument after * must be absolute (Assembler)
The argument after * in a macro call must be absolute, as it must be evaluated at macro call time.

macro argument may not appear after local (Assembler)
The list of labels after the directive "LOCAL" may not include any of the formal parameters to the
macro.

macro expansions nested too deep (Assembler)
Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files nested
at one time.
HI-TECH PICC Lite compiler 233

Error Messages

 8
macro work area overflow (Preprocessor)
The total length of a macro expansion has exceeded the size of an internal table. This table is normally
8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K bytes.

member * redefined (Parser)
This name of this member of the struct or union has already been used in this struct or union.

members cannot be functions (Parser)
A member of a structure or a union may not be a function. It may be a pointer to a function. The correct
syntax for a function pointer requires the use of parentheses to bind the star ("*") to the pointer name,
e.g. "int (*name)();".

metaregister * can’t be used directly (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

mismatched comparision (Code Generator)
A comparison is being made between a variable or expression and a constant value which is not in the
range of possible values for that expression, e.g. if you compare an unsigned character to the constant
value 300, the result will always be false (not equal) since an unsigned character can NEVER equal 300.
As an 8 bit value it can represent only 0-255.

misplaced ’?’ or ’:’, previous operator is * (Preprocessor)
A colon operator has been encountered in a #if expression that does not match up with a corresponding
? operator. Check parentheses etc.

misplaced constant in #if (Preprocessor)
A constant in a #if expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator.

missing ’)’ (Parser)
A closing parenthesis was missing from this expression.

missing ’=’ in class spec (Linker)
A class spec needs an = sign, e.g. -Ctext=ROM

missing ’]’ (Parser)
A closing square bracket was missing from this expression.

missing arch specification for * in chipinfo file (Assembler)
The chipinfo file (libpicinfo.ini by default) has a processor section without an ARCH values. The
architecture of the processor must be specified.

missing arg to -a (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
234

 8
missing arg to -e (Linker)
The error file name must be specified following the -e linker option.

missing arg to -i (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

missing arg to -j (Linker)
The maximum number of errors before aborting must be specified following the -j linker option.

missing arg to -q (Linker)
The -Q linker option requires the machine type for an argument.

missing arg to -u (Linker)
The -U (undefine) option needs an argument, e.g. -U_symbol

missing arg to -w (Linker)
The -W option (listing width) needs a numeric argument.

missing argument to ’pragma psect’ (Parser)
The pragma ’psect’ requires an argument of the form oldname=newname where oldname is an existing
psect name known to the compiler, and newname is the desired new name. Example: #pragma psect
bss=battery

missing argument to ’pragma switch’ (Parser)
The pragma ’switch’ requires an argument of auto, direct or simple.

missing basic type: int assumed (Parser)
This declaration does not include a basic type, so int has been assumed. This declaration is not illegal,
but it is preferable to include a basic type to make it clear what is intended.

missing key in avmap file (Linker)
A file required for producing Avocet format symbol files is corrupted. Try re-installing the compiler.

missing memory key in avmap file (Linker)
A file required for producing Avocet format symbol files is corrupted. Try re-installing the compiler.

missing name after pragma ’inline’ (Parser)
The ’inline’ pragma has the syntax:

#pragma inline func_name

where func_name is the name of a function which is to be expanded to inline code. This pragma has no
effect except on functions specially recognized by the code generator.
HI-TECH PICC Lite compiler 235

Error Messages

 8
missing name after pragma ’printf_check’ (Parser)
The pragma ’printf_check’, which enable printf style format string checking for a function, requires a
function name, e.g.

#pragma printf_check sprintf

missing newline (Preprocessor)
A new line is missing at the end of the line. Each line, including the last line, must have a new line at
the end. This problem is normally introduced by editors.

missing number after % in -p option (Linker)
The % operator in a -p option (for rounding boundaries) must have a number after it.

missing number after pragma ’pack’ (Parser)
The pragma ’pack’ requires a decimal number as argument. For example

#pragma pack(1)

will prevent the compiler aligning structure members onto anything other than one byte boundaries. Use
this with caution as some processors enforce alignment and will not operate correctly if word fetches are
made on odd boundaries (e.g. 68000, 8096).

missing number after pragma interrupt_level (Parser)
Pragma ’interrupt_level’ requires an argument from 0 to 7.

missing processor name after -p (Cromwell)
The -p option to cromwell must specify a processor.

mod by zero in #if, zero result assumed (Preprocessor)
A modulus operation in a #if expression has a zero divisor. The result has been assumed to be zero.

module * defines no symbols (Libr)
No symbols were found in the module’s object file.

module has code below file base of * (Linker)
This module has code below the address given, but the -C option has been used to specify that a binary
output file is to be created that is mapped to this address. This would mean code from this module would
have to be placed before the beginning of the file! Check for missing psect directives in assembler files.

multi-byte constant * isn’t portable (Preprocessor)
Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler.

multiple free: * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
236

 8
multiply defined symbol * (Assembler, Linker)
This symbol has been defined in more than one place in this module.

n= must specify a positive constant (Assembler)
The parameter to the LIST assembler control’s ’N’ option (which sets the page length for the listing
output) must be a positive constant number.

nested #asm directive (Preprocessor)
It is not legal to nest #asm directives. Check for a missing or misspelt #endasm directive.

nested comments (Preprocessor)
This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed.

no #asm before #endasm (Preprocessor)
A #endasm operator has been encountered, but there was no previous matching #asm.

no case labels (Code Generator)
There are no case labels in this switch statement.

no common RAM in PIC17Cxx device (Driver)
The chipinfo INI file did not specify a range of common memory for a PIC16 architecture chip.

no end record (Linker)
This object file has no end record. This probably means it is not an object file.

no end record found (Linker)
An object file did not contain an end record. This probably means the file is corrupted or not an object
file.

no file arguments (Assembler)
The assembler has been invoked without any file arguments. It cannot assemble anything.

no identifier in declaration (Parser)
The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces.

no input files specified (Cromwell)
Cromwell must have an input file to convert.

no interrupt strategy available (Code Generator)
The processor does not support saving and subsequent restoring of registers during an interrupt service
routine.
HI-TECH PICC Lite compiler 237

Error Messages

 8
no memory for string buffer (Parser)
P1 was unable to allocate memory for the longest string encountered, as it attempts to sort and merge
strings. Try reducing the number or length of strings in this module.

no output file format specified (Cromwell)
The output format must be specified to Cromwell.

no psect specified for function variable/argument allocation (Linker)
This is probably caused by omission of correct run-time startoff module. Check the linker arguments, or
"Object Files..." in HPD.

no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)
The code generator could not allocate any more memory. Try increasing the size of available memory.

no space for macro def’n (Assembler)
The assembler has run out of memory.

no start record: entry point defaults to zero (Linker)
None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in your
startup module by using the "END" directive.

no valid entries in chipinfo file (Assembler)
The chipinfo file (libpicinfo.ini by default) contains no valid processor descriptions.

no. of arguments redeclared (Parser)
The number of arguments in this function declaration does not agree with a previous declaration of the
same function.

nodecount = * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

non-constant case label (Code Generator)
A case label in this switch statement has a value which is not a constant.

non-prototyped function declaration: * (Parser)
A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions. If the function has no arguments, declare it as e.g. "int func(void)".

non-scalar types can’t be converted (Parser)
You can’t convert a structure, union or array to anything else. You can convert a pointer to one of those
things, so perhaps you left out an ampersand ("&").
238

 8
non-void function returns no value (Parser)
A function that is declared as returning a value has a "return" statement that does not specify a return
value.

not a member of the struct/union * (Parser)
This identifier is not a member of the structure or union type with which it used here.

not a variable identifier: * (Parser)
This identifier is not a variable; it may be some other kind of object, e.g. a label.

not an argument: * (Parser)
This identifier that has appeared in a K&R stype argument declarator is not listed inside the parentheses
after the function name. Check spelling.

null format name (Cromwell)
The -I or -O option to Cromwell must specify a file format.

object code version is greater than * (Linker)
The object code version of an object module is higher than the highest version the linker is known to
work with. Check that you are using the correct linker.

object file is not absolute (Objtohex)
The object file passed to objtohex has relocation items in it. This may indicate it is the wrong object file,
or that the linker or objtohex have been given invalid options.

only functions may be qualified interrupt (Parser)
The qualifier "interrupt" may not be applied to anything except a function.

only functions may be void (Parser)
A variable may not be "void". Only a function can be "void".

only lvalues may be assigned to or modified (Parser)
Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned to
or otherwise modified. A typecast does not yield an lvalue. To store a value of different type into a
variable, take the address of the variable, convert it to a pointer to the desired type, then dereference that
pointer, e.g. "*(int *)&x = 1" is legal whereas "(int)x = 1" is not.

only modifier l valid with this format (Parser)
The only modifier that is legal with this format is l (for long).

only modifiers h and l valid with this format (Parser)
Only modifiers h (short) and l (long) are legal with this printf() format specifier.

only register storage class allowed (Parser)
The only storage class allowed for a function parameter is "register".
HI-TECH PICC Lite compiler 239

Error Messages

 8
operand error (Assembler, Optimiser)
The operand to this opcode is invalid. Check you assembler reference manual for the proper form of
operands for this instruction.

operands of * not same pointer type (Parser)
The operands of this operator are of different pointer types. This probably means you have used the
wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error message.

operands of * not same type (Parser)
The operands of this operator are of different pointer. This probably means you have used the wrong
variable, but if the code is actually what you intended, use a typecast to suppress the error message.

operator * in incorrect context (Preprocessor)
An operator has been encountered in a #if expression that is incorrectly placed, e.g. two binary operators
are not separated by a value.

org argument must be a positive constant (Assembler)
An argument to the ORG assembler directive must be a positive constant or a symbol which has been
equated to a positive constant.

out of far memory (Code Generator)
The compiler has run out of far memory. Try removing TSR’s etc. If your system supports EMS memory,
the compiler will be able to use up to 64K of this, so if it is not enable, try enabling EMS.

out of memory (Code Generator, Assembler, Optimiser)
The compiler has run out of memory. If you have unnecessary TSRs loaded, remove them. If you are
running the compiler from inside another program, try running it directly from the command prompt.
Similarly, if you are using HPD, try using the command line compiler driver instead.

out of memory allocating * blocks of * (Linker)
Memory was required to extend an array but was unavailable.

out of near memory (Code Generator)
The compiler has run out of near memory. This is probably due to too many symbol names. Try splitting
the program up, or reducing the number of unused symbols in header files etc.

out of space in macro * arg expansion (Preprocessor)
A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes long.

out-of-range case label * (Code Generator)
This case label is not a value that the controlling expression can yield, and thus this label will never be
selected.
240

 8
output file cannot be also an input file (Linker)
The linker has detected an attempt to write its output file over one of its input files. This cannot be done,
because it needs to simultaneously read and write input and output files.

overfreed (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

page width must be >= * (Assembler)
The listing page width must be at least * characters. Any less will not allow a properly formatted listing
to be produced.

phase error (Assembler)
The assembler has calculated a different value for a symbol on two different passes. This is probably due
to bizarre use of macros or conditional assembly.

pointer required (Parser)
A pointer is required here. This often means you have used "->" with a structure rather than a structure
pointer.

pointer to * argument required (Parser)
A pointer argument is required for this format specifier. Check the number and order of format specifiers
and corresponding arguments.

pointer to non-static object returned (Parser)
This function returns a pointer to a non-static (e.g. automatic) variable. This is likely to be an error, since
the storage associated with automatic variables becomes invalid when the function returns.

popreg: bad reg (*) (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

portion of expression has no effect (Code Generator)
Part of this expression has no side effects, and no effect on the value of the expression.

possible pointer truncation (Parser)
A pointer qualified "far" has been assigned to a default pointer or a pointer qualified "near", or a default
pointer has been assigned to a pointer qualified "near". This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

preprocessor assertion failure (Preprocessor)
The argument to a preprocessor #assert directive has evaluated to zero. This is a programmer induced
error.
HI-TECH PICC Lite compiler 241

Error Messages

 8
probable missing ’}’ in previous block (Parser)
The compiler has encountered what looks like a function or other declaration, but the preceding function
has not been ended with a closing brace. This probably means that a closing brace has been omitted from
somewhere in the previous function, although it may well not be the last one.

processor type not defined (Assembler)
The processor must be defined either from the command line (eg. -16c84), via the PROCESSOR
assembler directive, or via the LIST assembler directive.

psect * cannot be in classes * (Linker)
A psect cannot be in more than one class. This is either due to assembler modules with conflicting class=
options, or use of the -C option to the linker.

psect * memory delta redefined: */* (Linker)
A global psect has been defined with two different deltas.

psect * memory space redefined: */* (Linker)
A global psect has been defined in two different memory spaces. Either rename one of the psects or, if
they are the same psect, place them in the same memory space using the SPACE psect flag.

psect * not loaded on * boundary (Linker)
This psect has a relocatability requirement that is not met by the load address given in a -P option. For
example if a psect must be on a 4K byte boundary, you could not start it at 100H.

psect * not relocated on * boundary (Linker)
This psect is not relocated on the required boundary. Check the relocatability of the psect and correct the
-p option. if necessary.

psect * not specified in -p option (Linker)
This psect was not specified in a -P or -A option to the linker. It has been linked at the end of the program,
which is probably not where you wanted it.

psect * re-orged (Linker)
This psect has had its start address specified more than once.

psect * selector value redefined (Linker)
The selector value for this psect has been defined more than once.

psect * type redefined: * (Linker)
This psect has had its type defined differently by different modules. This probably means you are trying
to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode code.

psect delta redefined (Assembler)
The DELTA parameter to the PSECT assembler directive’s is different from a previous PSECT directive.
242

 8
psect exceeds address limit: * (Linker)
The maximum address of the psect exceeds the limit placed on it using the LIMIT psect flag.

psect exceeds max size: * (Linker)
The psect has more bytes in it than the maximum allowed as specified using the SIZE psect flag.

psect is absolute: * (Linker)
This psect is absolute and should not have an address specified in a -P option.

psect may not be local and global (Assembler)
A psect may not be declared to be local if it has already been declared to be (default) global.

psect origin multiply defined: * (Linker)
The origin of this psect is defined more than once.

psect property redefined (Assembler)
A property of a psect has been defined in more than place to be different.

psect relocability redefined (Assembler)
The RELOC parameter to the PSECT assembler directive’s is different from a previous PSECT
directive.

psect selector redefined (Linker)
The selector associated with this psect has been defined differently in two or more places.

psect size redefined (Assembler)
The maximum size of this psect has been defined differently in two or more places.

psect space redefined (Assembler)
The psect space has already been defined using the psect SPACE flag elsewhere.

pushreg: bad reg (*) (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

qualifiers redeclared (Parser)
This function has different qualifiers in different declarations.

radix must be from 2 - 16 (Assembler)
The radix specified using the RADIX or LIST assembler directive must be in the range from 2 (binary)
to 16 (hexadecimal).

range check too complex (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

read error on * (Linker)
The linker encountered an error trying to read this file.
HI-TECH PICC Lite compiler 243

Error Messages

 8
record too long (Objtohex)
This indicates that the object file is not a valid HI-TECH object file.

record too long: * (Linker)
An object file contained a record with an illegal size. This probably means the file is corrupted or not an
object file.

recursive function calls: (Linker)
These functions (or function) call each other recursively. One or more of these functions has statically
allocated local variables (compiled stack). Either use the reentrant keyword (if supported with this
compiler) or recode to avoid recursion.

recursive macro definition of * (Preprocessor)
The named macro has been defined in such a manner that expanding it causes a recursive expansion of
itself!

redefining macro * (Preprocessor)
The macro specified is being redefined, to something different to the original definition. If you want to
deliberately redefine a macro, use #undef first to remove the original definition.

redundant & applied to array (Parser)
The address operator "&" has been applied to an array. Since using the name of an array gives its address
anyway, this is unnecessary and has been ignored.

refc == 0 (Assembler, Optimiser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

regused - bad arg to g (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

reloc= must specify a positive constant (Assembler)
The parameter to the PSECT assembler directive’s ’RELOC’ option must be a positive constant number.

relocation error (Assembler, Optimiser)
It is not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must be
used in various places where the assembler must know a value at assembly time.

relocation offset * out of range * (Linker)
An object file contained a relocation record with a relocation offset outside the range of the preceding
text record. This means the object file is probably corrupted.

relocation too complex (Assembler)
The complex relocation in this expression is too big to be inserted into the object file.
244

 8
remsym error (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

replace what ? (Libr)
The librarian requires one or more modules to be listed for replacement when using the ’r’ key.

rept argument must be >= 0 (Assembler)
The argument to a "REPT" directive must be greater than zero.

seek error: * (Linker)
The linker could not seek when writing an output file.

segment * overlaps segment * (Linker)
The named segments have overlapping code or data. Check the addresses being assigned by the "-P"
option.

set_fact_bit on pic17! (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

signatures do not match: * (Linker)
The specified function has different signatures in different modules. This means it has been declared
differently, e.g. it may have been prototyped in one module and not another. Check what declarations
for the function are visible in the two modules specified and make sure they are compatible.

signed bitfields not supported (Parser)
Only unsigned bitfields are supported. If a bitfield is declared to be type "int", the compiler still treats it
as unsigned.

simple integer expression required (Parser)
A simple integral expression is required after the operator "@", used to associate an absolute address
with a variable.

simple type required for * (Parser)
A simple type (i.e. not an array or structure)is required as an operand to this operator.

size= must specify a positive constant (Assembler)
The parameter to the PSECT assembler directive’s ’SIZE’ option must be a positive constant number.

sizeof external array * is zero (Parser)
The sizeof an external array evaluates to zero. This is probably due to the array not having an explicit
dimension in the extern declaration.

sizeof yields 0 (Code Generator)
The code generator has taken the size of an object and found it to be zero. This almost certainly indicates
an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero length array. In
HI-TECH PICC Lite compiler 245

Error Messages

 8
general, pointers to arrays are of little use. If you require a pointer to an array of objects of unknown
length, you only need a pointer to a single object that can then be indexed or incremented.

space= must specify a positive constant (Assembler)
The parameter to the PSECT assembler directive’s ’SPACE’ option must be a positive constant number.

static object has zero size: * (Code Generator)
A static object has been declared, but has a size of zero.

storage class illegal (Parser)
A structure or union member may not be given a storage class. Its storage class is determined by the
storage class of the structure.

storage class redeclared (Parser)
A variable or function has been re-declared with a different storage class. This can occur where there are
two conflicting declarations, or where an implicit declaration is followed by an actual declaration.

strange character * after ## (Preprocessor)
A character has been seen after the token catenation operator ## that is neither a letter nor a digit. Since
the result of this operator must be a legal token, the operands must be tokens containing only letters and
digits.

strange character after # * (Preprocessor)
There is an unexpected character after #.

string concatenation across lines (Parser)
Strings on two lines will be concatenated. Check that this is the desired result.

string expected (Parser)
The operand to an "asm" statement must be a string enclosed in parentheses.

string lookup failed in coff:get_string() (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

struct/union member expected (Parser)
A structure or union member name must follow a dot (".") or arrow ("->").

struct/union redefined: * (Parser)
A structure or union has been defined more than once.

struct/union required (Parser)
A structure or union identifier is required before a dot (".").
246

 8
struct/union tag or ’{’ expected (Parser)
An identifier denoting a structure or union or an opening brace must follow a "struct" or "union"
keyword.

symbol * cannot be global (Linker)
There is an error in an object file, where a local symbol has been declared global. This is either an invalid
object file, or an internal error in the linker. Try recreating the object file.

symbol * has erroneous psect: * (Linker)
There is an error in an object file, where a symbol has an invalid psect. This is either an invalid object
file, or an internal error in the linker. Try recreating the object file.

symbol * is not external (Assembler)
A symbol has been declared as EXTRN but is also defined in the current module.

symbol * not defined in #undef (Preprocessor)
The symbol supplied as argument to #undef was not already defined. This is a warning only, but could
be avoided by including the #undef in a #ifdef ... #endif block.

symbol cannot be both extern and public (Assembler)
If the symbol is declared as extern, it is to be imported. If it is declared as public, it is to be exported
from the current module. It is not possible for a symbol to be both.

symbol has been declared extern (Assembler)
A symbol has been declared in the current module, but has previously been declared extern. A symbol
cannot be both local and extern.

syntax error (Assembler, Optimiser)
A syntax error has been detected. This could be caused a number of things.

syntax error in -a spec (Linker)
The -A spec is invalid. A valid -A spec should be something like:

-AROM=1000h-1FFFh

syntax error in checksum list (Linker)
There is a syntax error in a checksum list read by the linker. The checksum list is read from standard
input by the linker, in response to an option. Re-read the manual on checksum list.

syntax error in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) contains non-standard syntax at the specified line.

syntax error in local argument (Assembler)
There is a syntax error in a local argument.
HI-TECH PICC Lite compiler 247

Error Messages

 8
text does not start at 0 (Linker)
Code in some things must start at zero. Here it doesn’t.

text offset too low (Linker)
You aren’t likely to see this error. Rhubarb!

text record has bad length: * (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Try recreating the object file.

text record has length too small: * (Linker)
This indicates that the object file is not a valid HI-TECH object file.

this function too large - try reducing level of optimization (Code Generator)
A large function has been encountered when using a -Og (global optimization) switch. Try re-compiling
without the global optimization, or reduce the size of the function.

this is a struct (Parser)
This identifier following a "union" or "enum" keyword is already the tag for a structure, and thus should
only follow the keyword "struct".

this is a union (Parser)
This identifier following a "struct" or "enum" keyword is already the tag for a union, and thus should
only follow the keyword "union".

this is an enum (Parser)
This identifier following a "struct" or "union" keyword is already the tag for an enumerated type, and
thus should only follow the keyword "enum".

too few arguments (Parser)
This function requires more arguments than are provided in this call.

too few arguments for format string (Parser)
There are too few arguments for this format string. This would result in a garbage value being printed
or converted at run time.

too many (*) enumeration constants (Parser)
There are too many enumeration constants in an enumerated type. The maximum number of enumerated
constants allowed in an enumerated type is 512.

too many (*) structure members (Parser)
There are too many members in a structure or union. The maximum number of members allowed in one
structure or union is 512.
248

 8
too many address spaces - space * ignored (Linker)
The limit to the number of address spaces is currently 16.

too many arguments (Parser)
This function does not accept as many arguments as there are here.

too many arguments for format string (Parser)
There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string.

too many arguments for macro (Preprocessor)
A macro may only have up to 31 parameters, as per the C Standard.

too many arguments in macro expansion (Preprocessor)
There were too many arguments supplied in a macro invocation. The maximum number allowed is 31.

too many cases in switch (Code Generator)
There are too many case labels in this switch statement. The maximum allowable number of case labels
in any one switch statement is 511.

too many common lines in chipinfo file for * (Assembler, Driver)
The chipinfo file (libpicinfo.ini by default) contains a processor section with too many COMMON
fields. Only one COMMON field is allowed.

too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)
There were so many errors that the compiler has given up. Correct the first few errors and many of the
later ones will probably go away.

too many file arguments. usage: cpp [input [output]] (Preprocessor)
CPP should be invoked with at most two file arguments.

too many files in coff file (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

too many include directories (Preprocessor)
A maximum of 7 directories may be specified for the preprocessor to search for include files.

too many initializers (Parser)
There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure).

too many input files (Cromwell)
To many input files have been specified to be converted by Cromwell.
HI-TECH PICC Lite compiler 249

Error Messages

 8
too many macro parameters (Assembler)
There are too many macro parameters on this macro definition.

too many nested #* statements (Preprocessor)
#if, #ifdef etc. blocks may only be nested to a maximum of 32.

too many nested #if statements (Preprocessor)
#if, #ifdef etc. blocks may only be nested to a maximum of 32.

too many object files (Driver)
A maximum of 128 object files may be passed to the linker. The driver exceeded this amount when
generating the command line for the linker.

too many output files (Cromwell)
To many output file formats have been specified to Cromwell.

too many psect class specifications (Linker)
There are too many psect class specifications (-C options)

too many psect pragmas (Code Generator)
Too many "pragma psect" directives have been used.

too many psects (Assembler)
There are too many psects! Boy, what a program!

too many qualifier names (Parser)
There are too many qualifier names specified.

too many rambank lines in chipinfo file for * (Assembler, Driver)
The chipinfo file (libpicinfo.ini by default) contains a processor section with too many RAMBANK
fields. Reduce the number of values.

too many references to * (Cref)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

too many relocation items (Objtohex)
Objtohex filled up a table. This program is just way too complex!

too many segment fixups (Objtohex)
There are too many segment fixups in the object file given to objtohex.

too many segments (Objtohex)
There are too many segments in the object file given to objtohex.
250

 8
too many symbols (Assembler)
There are too many symbols for the assemblers symbol table. Reduce the number of symbols in your
program. If it is the linker producing this error, suggest changing some global to local symbols.

too many symbols (*) (Linker)
There are too many symbols in the symbol table, which has a limit of * symbols. Change some global
symbols to local symbols to reduce the number of symbols.

too many temporary labels (Assembler)
There are too many temporary labels in this assembler file. The assembler allows a maximum of 2000
temporary labels.

too much indirection (Parser)
A pointer declaration may only have 16 levels of indirection.

too much pushback (Preprocessor)
This error should not occur, and represents an internal error in the preprocessor.

type conflict (Parser)
The operands of this operator are of incompatible types.

type modifier already specified (Parser)
This type modifier has already be specified in this type.

type modifiers not valid with this format (Parser)
Type modifiers may not be used with this format.

type redeclared (Parser)
The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration.

type specifier reqd. for proto arg (Parser)
A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

unable to open list file * (Linker)
The named list file could not be opened.

unbalanced paren’s, op is * (Preprocessor)
The evaluation of a #if expression found mismatched parentheses. Check the expression for correct
parenthesisation.

undefined *: * (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
HI-TECH PICC Lite compiler 251

Error Messages

 8
undefined enum tag: * (Parser)
This enum tag has not been defined.

undefined identifier: * (Parser)
This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors.

undefined shift (* bits) (Code Generator)
An attempt has been made to shift a value by a number of bits equal to or greater than the number of bits
in the data type, e.g. shifting a long by 32 bits. This will produce an undefined result on many processors.
This is non-portable code and is flagged as having undefined results by the C Standard.

undefined struct/union (Parser)
This structure or union tag is undefined. Check spelling etc.

undefined struct/union: * (Parser)
The specified structure or union tag is undefined. Check spelling etc.

undefined symbol * (Assembler)
The named symbol is not defined, and has not been specified "GLOBAL".

undefined symbol * in #if, 0 used (Preprocessor)
A symbol on a #if expression was not a defined preprocessor macro. For the purposes of this expression,
its value has been taken as zero.

undefined symbol in fnaddr record: * (Linker)
The linker has found an undefined symbol in the fnaddr record for a non-reentrant function.

undefined symbol in fnbreak record: * (Linker)
The linker has found an undefined symbol in the fnbreak record for a non-reentrant function.

undefined symbol in fncall record: * (Linker)
The linker has found an undefined symbol in the fncall record for a non-reentrant function.

undefined symbol in fnindir record: * (Linker)
The linker has found an undefined symbol in the fnindir record for a non-reentrant function.

undefined symbol in fnroot record: * (Linker)
The linker has found an undefined symbol in the fnroot record for a non-reentrant function.

undefined symbol in fnsize record: * (Linker)
The linker has found an undefined symbol in the fnsize record for a non-reentrant function.
252

 8
undefined symbol: (Assembler, Linker)
The symbol following is undefined at link time. This could be due to spelling error, or failure to link an
appropriate module.

undefined symbols: (Linker)
A list of symbols follows that were undefined at link time.

undefined temporary label (Assembler)
A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

undefined variable: * (Parser)
This variable has been used but not defined at this point.

unexpected end of file (Linker)
This probably means an object file has been truncated because of a lack of disk space.

unexpected eof (Parser)
An end-of-file was encountered unexpectedly. Check syntax.

unexpected text in #control line ignored (Preprocessor)
This warning occurs when extra characters appear on the end of a control line, e.g.

#endif something

The "something" will be ignored, but a warning is issued. It is preferable (and in accordance with
Standard C) to enclose the "something" as a comment, e.g.

#endif /* something */

unexpected \ in #if (Preprocessor)
The backslash is incorrect in the #if statement.

unknown ’with’ psect referenced by psect * (Linker)
The specified psect has been placed with a psect using the psect ’with’ flag. The psect it has been placed
with does not exist.

unknown addressing mode * (Assembler, Optimiser)
An unknown addressing mode was used in the assembly file.

unknown architecture in chipinfo file at line * (Assembler, Driver)
An chip architecture (family) that is unknown was encountered when reading the chip INI file. Valid
architectures are: PIC12, PIC14 and PIC16, representing baseline, midrange and highend devices,
respectively.
HI-TECH PICC Lite compiler 253

Error Messages

 8
unknown argument to ’pragma switch’: * (Code Generator)
The ’#pragma switch’ directive has been used with an invalid switch code generation method. Possible
arguments are: auto, simple and direct.

unknown complex operator * (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Try recreating the object file.

unknown fnrec type * (Linker)
This indicates that the object file is not a valid HI-TECH object file.

unknown format name ’*’ (Cromwell)
The output format specified to Cromwell is unknown.

unknown op * in emobj (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown op * in size_psect (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown op in emasm(): * (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown option * (Preprocessor)
This option to the preprocessor is not recognized.

unknown pragma * (Parser)
An unknown pragma directive was encountered.

unknown predicate * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown psect: * (Linker, Optimiser)
This psect has been listed in a -P option, but is not defined in any module within the program.

unknown qualifier ’*’ given to -a (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown qualifier ’*’ given to -i (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unknown record type: * (Linker)
An invalid object module has been read by the linker. It is either corrupted or not an object file.

unknown register name * (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
254

 8
unknown symbol type * (Linker)
The symbol type encountered is unknown to this linker. Check that the correct linker is being used.

unreachable code (Parser)
This section of code will never be executed, because there is no execution path by which it could be
reached. Look for missing "break" statements inside a control structure like "while" or "for".

unreasonable matching depth (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

unrecognised line in chipinfo file at line * (Assembler)
The chipinfo file (libpicinfo.ini by default) contains a processor section with an unrecognised line. Look
in the chipinfo file for the possibilities.

unrecognized option to -z: * (Code Generator)
The code generator has been passed a -Z option it does not understand. This should not happen if it is
invoked with the standard driver.

unrecognized qualifer name after ’strings’ (Parser)
The pragma ’strings’ requires a list of valid qualifier names. For example

#pragma strings const code

would add const and code to the current string qualifiers. If no qualifiers are specified, all qualification
will be removed from subsequent strings. The qualifier names must be recognized by the compiler.

unterminated #if[n][def] block from line * (Preprocessor)
A #if or similar block was not terminated with a matching #endif. The line number is the line on which
the #if block began.

unterminated comment in included file (Preprocessor)
Comments begun inside an included file must end inside the included file.

unterminated macro arg (Assembler)
An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro
arguments.

unterminated string (Assembler, Optimiser)
A string constant appears not to have a closing quote missing.

unterminated string in macro body (Preprocessor, Assembler)
A macro definition contains a string that lacks a closing quote.

unused constant: * (Parser)
This enumerated constant is never used. Maybe it isn’t needed at all.
HI-TECH PICC Lite compiler 255

Error Messages

 8
unused enum: * (Parser)
This enumerated type is never used. Maybe it isn’t needed at all.

unused label: * (Parser)
This label is never used. Maybe it isn’t needed at all.

unused member: * (Parser)
This structure member is never used. Maybe it isn’t needed at all.

unused structure: * (Parser)
This structure tag is never used. Maybe it isn’t needed at all.

unused typedef: * (Parser)
This typedef is never used. Maybe it isn’t needed at all.

unused union: * (Parser)
This union type is never used. Maybe it isn’t needed at all.

unused variable declaration: * (Parser)
This variable is never used. Maybe it isn’t needed at all.

unused variable definition: * (Parser)
This variable is never used. Maybe it isn’t needed at all.

upper case #include files are non-portable (Preprocessor)
When using DOS, the case of an #include file does not matter. In other operating systems the case is
significant.

variable * must be qualified ’const’ to be initialised (Parser)
Any initialised variable must be declared ’const’, as all initialised variables are placed in ROM, with no
copy placed in RAM.

variable may be used before set: * (Code Generator)
This variable may be used before it has been assigned a value. Since it is an auto variable, this will result
in it having a random value.

void function cannot return value (Parser)
A void function cannot return a value. Any "return" statement should not be followed by an expression.

while expected (Parser)
The keyword "while" is expected at the end of a "do" statement.

work buffer overflow doing * ## (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.
256

 8
work buffer overflow: * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with details.

write error (out of disk space?) * (Linker)
Probably means that the hard disk is full.

write error on * (Assembler, Linker, Cromwell)
A write error occurred on the named file. This probably means you have run out of disk space.

write error on object file (Assembler)
An error was reported when the assembler was attempting to write an object file. This probably means
there is not enough disk space.

wrong number of macro arguments for * - * instead of * (Preprocessor)
A macro has been invoked with the wrong number of arguments.

HI-TECH PICC Lite compiler 257

Error Messages

 8
258

 9
Library Functions

The functions within the PICC Lite compiler library are listed in this chapter. Each entry begins with the
name of the function. This is followed by information analysed into the following headings.

Synopsis
This is the C definition of the function, and the header file in which it is declared.

Description
This is a narrative description of the function and its purpose.

Example
This is an example of the use of the function. It is usually a complete small program that illustrates the
function.

Data types
If any special data types (structures etc.) are defined for use with the function, they are listed here with
their C definition. These data types will be defined in the header file given under heading - Synopsis.

See also
This refers you to any allied functions.

Return value
The type and nature of the return value of the function, if any, is given. Information on error returns is
also included

Only those headings which are relevant to each function are used.
HI-TECH PICC Lite compiler 259

Library Functions

 9
ABS
Synopsis

#include <stdlib.h>

int abs (int j)

Description
The abs() function returns the absolute value of j.

Example
#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));
}

Return Value
The absolute value of j.
260

 9
ACOS
Synopsis

#include <math.h>

double acos (double f)

Description
The acos() function implements the converse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example
#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = acos(i)*180.0/3.141592;
printf("acos(%f) = %f degrees\n", i, a);

}
}

See Also
sin(), cos(), tan(), asin(), atan(), atan2()

Return Value
An angle in radians, in the range 0 to π. Where the argument value is outside the domain -1 to 1, the
return value will be zero.
HI-TECH PICC Lite compiler 261

Library Functions

 9
ASCTIME
Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description
The asctime() function takes the time broken down into the struct tm structure, pointed to by its
argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0
Note the newline at the end of the string. The width of each field in the string is fixed. The example gets
the current time, converts it to a struct tm pointer with localtime(), it then converts this to
ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("%s", asctime(tp));

}

See Also
ctime(), gmtime(), localtime(), time()

Return Value
A pointer to the string.

Note
The example will require the user to provide the time() routine as it cannot be supplied with the
compiler. See time() for more details.
262

 9
Data Types
struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
HI-TECH PICC Lite compiler 263

Library Functions

 9
ASIN
Synopsis

#include <math.h>

double asin (double f)

Description
The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = asin(i)*180.0/3.141592;
printf("asin(%f) = %f degrees\n", i, a);

}
}

See Also
sin(), cos(), tan(), acos(), atan(), atan2()

Return Value
An angle in radians, in the range -π/2 to +π/2. Where the argument value is outside the domain -1 to 1,
the return value will be zero.
264

 9
ATAN
Synopsis

#include <math.h>

double atan (double x)

Description
This function returns the arc tangent of its argument, i.e. it returns an angle e in the range -π/2 to π/2
such that tan(e) == x.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan(1.5));
}

See Also
sin(), cos(), tan(), asin(), acos(), atan2()

Return Value
The arc tangent of its argument.
HI-TECH PICC Lite compiler 265

Library Functions

 9
ATAN2
Synopsis

#include <math.h>

double atan2 (double y, double x)

Description
This function returns the arc tangent of y/x, using the sign of both arguments to determine the quadrant
of the return value.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan2(1.5, 1));
}

See Also
sin(), cos(), tan(), asin(), acos(), atan()

Return Value
The arc tangent of y/x in the range -π to +π radians. If both y and x are zero, a domain error occurs and
zero is returned.
266

 9
ATOF
Synopsis

#include <stdlib.h>

double atof (const char * s)

Description
The atof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating point
or scientific notation.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
double i;

gets(buf);
i = atof(buf);
printf("Read %s: converted to %f\n", buf, i);

}

See Also
atoi(), atol()

Return Value
A double precision floating point number. If no number is found in the string, 0.0 will be returned.
HI-TECH PICC Lite compiler 267

Library Functions

 9
ATOI
Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description
The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = atoi(buf);
printf("Read %s: converted to %d\n", buf, i);

}

See Also
xtoi(), atof(), atol()

Return Value
A signed integer. If no number is found in the string, 0 will be returned.
268

 9
ATOL
Synopsis

#include <stdlib.h>

long atol (const char * s)

Description
The atol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
long i;

gets(buf);
i = atol(buf);
printf("Read %s: converted to %ld\n", buf, i);

}

See Also
atoi(), atof()

Return Value
A long integer. If no number is found in the string, 0 will be returned.
HI-TECH PICC Lite compiler 269

Library Functions

 9
CEIL
Synopsis

#include <math.h>

double ceil (double f)

Description
This routine returns the smallest whole number not less than f.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

double j;

scanf("%lf", &j);
printf("The ceiling of %lf is %lf\n", j, ceil(j));

}
270

 9
COS
Synopsis

#include <math.h>

double cos (double f)

Description
This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated by
expansion of a polynomial series approximation.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also
sin(), tan(), asin(), acos(), atan(), atan2()

Return Value
A double in the range -1 to +1.
HI-TECH PICC Lite compiler 271

Library Functions

 9
COSH, SINH, TANH
Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description
These functions are the hyperbolic implementations of the trigonometric functions; cos(), sin() and
tan().

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", cosh(1.5));
printf("%f\n", sinh(1.5));
printf("%f\n", tanh(1.5));

}

Return Value
The function cosh() returns the hyperbolic cosine value.
The function sinh() returns the hyperbolic sine value.
The function tanh() returns the hyperbolic tangent value.
272

 9
CTIME
Synopsis

#include <time.h>

char * ctime (time_t * t)

Description
The ctime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.

Example
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also
gmtime(), localtime(), asctime(), time()

Return Value
A pointer to the string.

Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

Data Types
typedef long time_t;
HI-TECH PICC Lite compiler 273

Library Functions

 9
DI, EI
Synopsis

#include <pic.h>

 void ei(void)
 void di(void)

Description
ei and di enable and disable interrupts respectively. These are implemented as macros defined in pic.h.
They will expand to an in-line assembler instruction that sets or clears the interrupt enable bit.

The example shows the use of ei and di around access to a long variable that is modified during an
interrupt. If this was not done, it would be possible to return an incorrect value, if the interrupt occurred
between accesses to successive words of the count value.

Example
#include <pic.h>

long count;

void interrupt tick(void)
{

count++;
}

long getticks(void)
{

long val; /* Disable interrupts around access
to count, to ensure consistency.*/

di();
val = count;
ei();
return val;

}
274

 9
DIV
Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description
The div() function computes the quotient and remainder of the numerator divided by the denominator.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

div_t x;

x = div(12345, 66);
printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

Return Value
Returns the quotient and remainder into the div_t structure.

Data Types
typedef struct
{

int quot;
int rem;

} div_t;
HI-TECH PICC Lite compiler 275

Library Functions

 9
EEPROM_READ, EEPROM_WRITE
Synopsis

#include <pic.h>

unsigned char eeprom_read (unsigned char addr);
void eeprom_write (unsigned char addr, unsigned char value);

Description
These function allow access to the on-board eeprom (when present). The eeprom is not in the directly-
accessible memory space and a special byte sequence is loaded to the eeprom control registers to access
the device. Writing a value to the eeprom is a slow process and the eeprom_write() function polls
the appropriate registers to ensure that any previous writes have completed before writing the next piece
of data. Reading data is completed in the one cycle and no polling is necessary to check for a read
completion.

Example
#include <pic.h>

void
main (void)
{

unsigned char data;
unsigned char address;

address = 0x10;
data = eeprom_read(address);

}

Note
It may be necessary to poll the eeprom registers to ensure that the write has completed if an
eeprom_write() call is immediately followed by an eeprom_read(). The global interrupt enable
bit (GIE) is now restored by the eeprom_write() routine. The EEIF interrupt flag is not reset by
this function.
276

 9
EVAL_POLY
Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description
The eval_poly() function evaluates a polynomial, whose coefficients are contained in the array d,
at x, for example:

y = x*x*d2 + x*d1 + d0.
The order of the polynomial is passed in n.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

double x, y;
double d[3] = {1.1, 3.5, 2.7};

x = 2.2;
y = eval_poly(x, d, 2);
printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value
A double value, being the polynomial evaluated at x.
HI-TECH PICC Lite compiler 277

Library Functions

 9
EXP
Synopsis

#include <math.h>

double exp (double f)

Description
The exp() routine returns the exponential function of its argument, i.e. e to the power of f.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)
printf("e to %1.0f = %f\n", f, exp(f));

}

See Also
log(), log10(), pow()
278

 9
FABS
Synopsis

#include <math.h>

double fabs (double f)

Description
This routine returns the absolute value of its double argument.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f %f\n", fabs(1.5), fabs(-1.5));
}

See Also
abs()
HI-TECH PICC Lite compiler 279

Library Functions

 9
FLOOR
Synopsis

#include <math.h>

double floor (double f)

Description
This routine returns the largest whole number not greater than f.

Example
#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", floor(1.5));
printf("%f\n", floor(-1.5));

}
280

 9
FREXP
Synopsis

#include <math.h>

double frexp (double f, int * p)

Description
The frexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into the int object pointed to by p. Its return value x is in the interval (0.5,
1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is zero, both parts of the result
are zero.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;
int i;

f = frexp(23456.34, &i);
printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also
ldexp()
HI-TECH PICC Lite compiler 281

Library Functions

 9
GET_CAL_DATA
Synopsis

#include <pic.h>

double get_cal_data (const unsigned char * code_ptr)

Description
This function returns the 32-bit floating point calibration data from the PIC 14000 calibration space.
Only use this function to access KREF, KBG, VHTHERM and KTC (that is, the 32-bit floating point
parameters). FOSC and TWDT can be accessed directly as they are bytes.

Example
#include <pic.h>

void
main (void)
{

double x;
unsigned char y;

/* Get the slope reference ratio. */
x = get_cal_data(KREF);

/* Get the WDT time-out. */
y =TWDT;

}

Return Value
The value of the calibration parameter

Note
This function can only be used on the PIC 14000.
282

 9
GMTIME
Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description
This function converts the time pointed to by t which is in seconds since 00:00:00 on Jan 1, 1970, into
a broken down time stored in a structure as defined in time.h. The structure is defined in the ’Data
Types’ section.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = gmtime(&clock);
printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also
ctime(), asctime(), time(), localtime()

Return Value
Returns a structure of type tm.

Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.
HI-TECH PICC Lite compiler 283

Library Functions

 9
Data Types
typedef long time_t;
struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
284

 9
ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.
Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit(char c)

Description
These macros, defined in ctype.h, test the supplied character for membership in one of several
overlapping groups of characters. Note that all except isascii() are defined for c, if isascii(c)
is true or if c = EOF.

isalnum (c) c is in 0-9 or a-z or A-Z
 isalpha (c) c is in A-Z or a-z
 isascii (c) c is a 7 bit ascii character
 iscntrl (c) c is a control character
 isdigit (c) c is a decimal digit
 islower (c) c is in a-z
 isprint (c) c is a printing char
 isgraph (c) c is a non-space printable character
 ispunct (c) c is not alphanumeric
 isspace (c) c is a space, tab or newline
 isupper (c) c is in A-Z
 isxdigit (c) c is in 0-9 or a-f or A-F

Example

#include <ctype.h>
#include <stdio.h>
HI-TECH PICC Lite compiler 285

Library Functions

 9
void
main (void)
{

char buf[80];
int i;

gets(buf);
i = 0;
while(isalnum(buf[i]))

i++;
buf[i] = 0;
printf("’%s’ is the word\n", buf);

}

See Also
toupper(), tolower(), toascii()
286

 9
KBHIT
Synopsis

#include <conio.h>

bit kbhit (void)

Description
This function returns 1 if a character has been pressed on the console keyboard, 0 otherwise. Normally
the character would then be read via getch().

Example
#include <conio.h>

void
main (void)
{

int i;

while(!kbhit()) {
cputs("I’m waiting..");
for(i = 0 ; i != 1000 ; i++)

continue;
}

}

See Also
getch(), getche()

Return Value
Returns one if a character has been pressed on the console keyboard, zero otherwise. Note: the return
value is a bit.

Note
The body of the routine will need to be implemented by the user. The skeleton function will be found in
the sources direstory.
HI-TECH PICC Lite compiler 287

Library Functions

 9
LDEXP
Synopsis

#include <math.h>

double ldexp (double f, int i)

Description
The ldexp() function performs the inverse of frexp() operation; the integer i is added to the
exponent of the floating point f and the resultant returned.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

f = ldexp(1.0, 10);
printf("1.0 * 2^10 = %f\n", f);

}

See Also
frexp()

Return Value
The return value is the integer i added to the exponent of the floating point value f.
288

 9
LDIV
Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description
The ldiv() routine divides the numerator by the denominator, computing the quotient and the
remainder. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value
is the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and the
members of the returned structure are all of type long int.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

ldiv_t lt;

lt = ldiv(1234567, 12345);
printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also
div()

Return Value
Returns a structure of type ldiv_t

Data Types
typedef struct {

long quot; /* quotient */
long rem; /* remainder */

} ldiv_t;
HI-TECH PICC Lite compiler 289

Library Functions

 9
LOCALTIME
Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description
The localtime() function converts the time pointed to by t which is in seconds since 00:00:00 on
Jan 1, 1970, into a broken down time stored in a structure as defined in time.h. The routine
localtime() takes into account the contents of the global integer time_zone. This should contain
the number of minutes that the local time zone is westward of Greenwich. Since there is no way under
MS-DOS of actually predetermining this value, by default localtime() will return the same result
as gmtime().

Example
#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("Today is %s\n", wday[tp->tm_wday]);

}

See Also
ctime(), asctime(), time()

Return Value
Returns a structure of type tm.
290

 9
Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

Data Types
typedef long time_t;
struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
HI-TECH PICC Lite compiler 291

Library Functions

 9
LOG, LOG10
Synopsis

#include <math.h>

double log (double f)
double log10 (double f)

Description
The log() function returns the natural logarithm of f. The function log10() returns the logarithm
to base 10 of f.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("log(%1.0f) = %f\n", f, log(f));

}

See Also
exp(), pow()

Return Value
Zero if the argument is negative.
292

 9
MEMCHR
Synopsis

#include <string.h>

/* For baseline and midrange processors */
const void * memchr (const void * block, int val, size_t length)

/* For high-end processors */
void * memchr (const void * block, int val, size_t length)

Description
The memchr() function is similar to strchr() except that instead of searching null terminated
strings, it searches a block of memory specified by length for a particular byte. Its arguments are a
pointer to the memory to be searched, the value of the byte to be searched for, and the length of the block.
A pointer to the first occurrence of that byte in the block is returned.

Example
#include <string.h>
#include <stdio.h>

unsigned int ary[] = {1, 5, 0x6789, 0x23};

void
main (void)
{

char * cp;

cp = memchr(ary, 0x89, sizeof ary);
if(!cp)

printf("not found\n");
else

printf("Found at offset %u\n", cp - (char *)ary);
}

See Also
strchr()

Return Value
A pointer to the first byte matching the argument if one exists; NULL otherwise.
HI-TECH PICC Lite compiler 293

Library Functions

 9
MEMCMP
Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description
The memcmp() function compares two blocks of memory, of length n, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character. The
ASCII collating sequence is used for the comparison, but the effect of including non-ASCII characters
in the memory blocks on the sense of the return value is indeterminate. Testing for equality is always
reliable.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

int buf[10], cow[10], i;

buf[0] = 1;
buf[2] = 4;
cow[0] = 1;
cow[2] = 5;
buf[1] = 3;
cow[1] = 3;
i = memcmp(buf, cow, 3*sizeof(int));
if(i < 0)

printf("less than\n");
else if(i > 0)

printf("Greater than\n");
else

printf("Equal\n");
}

See Also
strncpy(), strncmp(), strchr(), memset(), memchr()
294

 9
Return Value
Returns negative one, zero or one, depending on whether s1 points to string which is less than, equal to
or greater than the string pointed to by s2 in the collating sequence.
HI-TECH PICC Lite compiler 295

Library Functions

 9
MEMCPY
Synopsis

#include <string.h>

/* For baseline and midrange processors */
void * memcpy (void * d, const void * s, size_t n)

/* For high-end processors */
far void * memcpy (far void * d, const void * s, size_t n)

Description
The memcpy() function copies n bytes of memory starting from the location pointed to by s to the
block of memory pointed to by d. The result of copying overlapping blocks is undefined. The
memcpy() function differs from strcpy() in that it copies a specified number of bytes, rather than
all bytes up to a null terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buf[80];

memset(buf, 0, sizeof buf);
memcpy(buf, "a partial string", 10);
printf("buf = ’%s’\n", buf);

}

See Also
strncpy(), strncmp(), strchr(), memset()

Return Value
The memcpy() routine returns its first argument.
296

 9
MEMMOVE
Synopsis

#include <string.h>

/* For baseline and midrange processors */
void * memmove (void * s1, const void * s2, size_t n)

/* For high-end processors */
far void * memmove (far void * s1, const void * s2, size_t n)

Description
The memmove() function is similar to the function memcpy() except copying of overlapping blocks
is handled correctly. That is, it will copy forwards or backwards as appropriate to correctly copy one
block to another that overlaps it.

See Also
strncpy(), strncmp(), strchr(), memcpy()

Return Value
The function memmove() returns its first argument.
HI-TECH PICC Lite compiler 297

Library Functions

 9
MEMSET
Synopsis

#include <string.h>

/* For baseline and midrange processors */
void * memset (void * s, int c, size_t n)

/* For high-end processors */
far void * memset (far void * s, int c, size_t n)

Description
The memset() function fills n bytes of memory starting at the location pointed to by s with the byte c.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char abuf[20];

strcpy(abuf, "This is a string");
memset(abuf, ’x’, 5);
printf("buf = ’%s’\n", abuf);

}

See Also
strncpy(), strncmp(), strchr(), memcpy(), memchr()
298

 9
MODF
Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description
The modf() function splits the argument value into integral and fractional parts, each having the
same sign as value. For example, -3.17 would be split into the intergral part (-3) and the fractional part
(-0.17).

The integral part is stored as a double in the object pointed to by iptr.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double i_val, f_val;

f_val = modf(-3.17, &i_val);
}

Return Value
The signed fractional part of value.
HI-TECH PICC Lite compiler 299

Library Functions

 9
PERSIST_CHECK, PERSIST_VALIDATE
Synopsis

#include <sys.h>

int persist_check (int flag)
void persist_validate (void)

Description
The persist_check() function is used with non-volatile RAM variables, declared with the
persistent qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a
p r ev i o u s c a l l t o persist_validate() a n d a c h e c k s u m a l so ca l c u l a t e d by
persist_validate(). If the magic number and checksum are correct, it returns true (non-zero). If
either are incorrect, it returns zero. In this case it will optionally zero out and re-validate the non-volatile
RAM area (by calling persist_validate()). This is done if the flag argument is true.

The persist_validate() routine should be called after each change to a persistent variable. It will
set up the magic number and recalculate the checksum.

Example
#include <sys.h>
#include <stdio.h>

persistent long reset_count;

void
main (void)
{

if(!persist_check(1))
printf("Reset count invalid - zeroed\n");

else
printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */
persist_validate(); /* and checksum */
for(;;)

continue; /* sleep until next reset */
}

Return Value
FALSE (zero) if the NV-RAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.
300

 9
POW
Synopsis

#include <math.h>

double pow (double f, double p)

Description
The pow() function raises its first argument, f, to the power p.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also
log(), log10(), exp()

Return Value
f to the power of p.
HI-TECH PICC Lite compiler 301

Library Functions

 9
PRINTF
Synopsis

#include <stdio.h>

unsigned char printf (const char * fmt, ...)

Description
The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating into a string buffer (sprintf()). The printf() routine is passed a format string,
followed by a list of zero or more arguments. In the format string are conversion specifications, each of
which is used to print out one of the argument list values.

Each conversion specification is of the form %m.nc where the percent symbol % introduces a
conversion, followed by an optional width specification m. The n specification is an optional precision
specification (introduced by the dot) and c is a letter specifying the type of the conversion. Field widths
and precision are only supported on the midrange and high-end processors, with the precision
specification only applicable to %s.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one integer
argument will be taken from the list to provide that value. The types of conversion for the Baseline series
are:

o x X u d
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the case of
d, unsigned otherwise. The precision value is the total number of digits to print, and may be used to force
leading zeroes. E.g. %8.4x will print at least 4 hex digits in an 8 wide field. The letter X prints out
hexadecimal numbers using the upper case letters A-F rather than a-f as would be printed when using x.
When the alternate format is specified, a leading zero will be supplied for the octal format, and a leading
0x or 0X for the hex format.

s
Print a string - the value argument is assumed to be a character pointer. At most n characters from the
string will be printed, in a field m characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus %% will produce a single
percent sign.

For the Midrange and High-end series, the types of conversions are as for the Baseline with the addition
of:
302

 9
l
Long integer conversion - Preceding the integer conversion key letter with an l indicates that the
argument list is long.

f
Floating point - m is the total width and n is the number of digits after the decimal point. If n is omitted
it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate format is
specified.

Example
printf("Total = %4d%%", 23)

yields ’Total = 23%’

printf("Size is %lx" , size)
where size is a long, prints size
as hexadecimal.

Note that the precision number is only available when using Midrange
and High-end processors when using the %s placeholder.
printf("Name = %.8s", "a1234567890")

yields ’Name = a1234567’

Note that the variable width number is only available when using Midrange
and High-end processors placeholder.
printf("xx%*d", 3, 4)

yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int
error (char * s, ...)
{

va_list ap;

va_start(ap, s);
printf("Error: ");
vprintf(s, ap);
putchar(’\n’);
va_end(ap);

}

void
HI-TECH PICC Lite compiler 303

Library Functions

 9
main (void)
{

int i;

i = 3;
error("testing 1 2 %d", i);

}

See Also
sprintf()

Return Value
The printf() routine returns the number of characters written to stdout.
NB The return value is a char, NOT an int.

Note
Certain features of printf are only available for the midrange and high-end processors. Read the
description for details. Printing floating point numbers requires that the float to be printed be no larger
than the largest possible long integer. In order to use long or float formats, the appropriate supplemental
library must be included. See the description on the PICC -L option and the HPDPIC Options/Long
formats in printf menu for more details.
304

 9
RAND
Synopsis

#include <stdlib.h>

int rand (void)

Description
The rand() function is a pseudo-random number generator. It returns an integer in the range 0 to
32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set using the srand() call.
The example shows use of the time() function to generate a different starting point for the sequence
each time.

Example
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also
srand()

Note
The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.
HI-TECH PICC Lite compiler 305

Library Functions

 9
SIN
Synopsis

#include <math.h>

double sin (double f)

Description
This function returns the sine function of its argument.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also
cos(), tan(), asin(), acos(), atan(), atan2()

Return Value
Sine vale of f.
306

 9
SPRINTF
Synopsis

#include <stdio.h>

/* For baseline and midrange processors */
unsigned char sprintf (char *buf, const char * fmt, ...)

/* For high-end processors */
unsigned char sprintf (far char *buf, const char * fmt, ...)

Description
The sprintf() function operates in a similar fashion to printf(), except that instead of placing
the converted output on the stdout stream, the characters are placed in the buffer at buf. The resultant
string will be null terminated, and the number of characters in the buffer will be returned.

See Also
printf()

Return Value
The sprintf() routine returns the number of characters placed into the buffer.
NB: The return value is a char not an int.

Note
For High-end processors the buffer is accessed via a far pointer.
HI-TECH PICC Lite compiler 307

Library Functions

 9
SQRT
Synopsis

#include <math.h>

double sqrt (double f)

Description
The function sqrt(), implements a square root routine using Newton’s approximation.

Example
#include <math.h>
#include <stdio.h>

void
main (void)
{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)
printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also
exp()

Return Value
Returns the value of the square root.

Note
A domain error occurs if the argument is negative.
308

 9
SRAND
Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description
The srand() function initializes the random number generator accessed by rand() with the given
seed. This provides a mechanism for varying the starting point of the pseudo-random sequence yielded
by rand(). On the z80, a good place to get a truly random seed is from the refresh register. Otherwise
timing a response from the console will do, or just using the system time.

Example
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also
rand()
HI-TECH PICC Lite compiler 309

Library Functions

 9
STRCAT
Synopsis

#include <string.h>

/* For baseline and midrange processors */
char * strcat (char * s1, const char * s2)

/* For high-end processors */
far char * strcat (far char * s1, const char * s2)

Description
This function appends (catenates) string s2 to the end of string s1. The result will be null terminated.
The argument s1 must point to a character array big enough to hold the resultant string.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strcpy(), strcmp(), strncat(), strlen()

Return Value
The value of s1 is returned.
310

 9
STRCHR, STRICHR
Synopsis

#include <string.h>

/* For baseline and midrange processors */
const char * strchr (const char * s, int c)
const char * strichr (const char * s, int c)

/* For high-end processors */
char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description
The strchr() function searches the string s for an occurrence of the character c. If one is found, a
pointer to that character is returned, otherwise NULL is returned.

The strichr() function is the case-insensitive version of this function.

Example
#include <strings.h>
#include <stdio.h>

void
main (void)
{

static char temp[] = "Here it is...";
char c = ’s’;

if(strchr(temp, c))
printf("Character %c was found in string\n", c);

else
printf("No character was found in string");

}

See Also
strrchr(), strlen(), strcmp()

Return Value
A pointer to the first match found, or NULL if the character does not exist in the string.

Note
The functions takes an integer argument for the character, only the lower 8 bits of the value are used.
HI-TECH PICC Lite compiler 311

Library Functions

 9
STRCMP, STRICMP
Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)
int stricmp (const char * s1, const char * s2)

Description
The strcmp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whether s1 is less than, equal to or greater than s2. The comparison is done with the
standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

int i;

if((i = strcmp("ABC", "ABc")) < 0)
printf("ABC is less than ABc\n");

else if(i > 0)
printf("ABC is greater than ABc\n");

else
printf("ABC is equal to ABc\n");

}

See Also
strlen(), strncmp(), strcpy(), strcat()

Return Value
A signed integer less than, equal to or greater than zero.

Note
Other C implementations may use a different collating sequence; the return value is negative, zero or
positive, i.e. do not test explicitly for negative one (-1) or one (1).
312

 9
STRCPY
Synopsis

#include <string.h>

/* For baseline and midrange processors */
char * strcpy (char * s1, const char * s2)

/* For high-end processors */
far char * strcpy (far char * s1, const char * s2)

Description
This function copies a null terminated string s2 to a character array pointed to by s1. The destination
array must be large enough to hold the entire string, including the null terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strncpy(), strlen(), strcat(), strlen()

Return Value
The destination buffer pointer s1 is returned.
HI-TECH PICC Lite compiler 313

Library Functions

 9
STRCSPN
Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description
The strcspn() function returns the length of the initial segment of the string pointed to by s1 which
consists of characters NOT from the string pointed to by s2.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));
printf("%d\n", strcspn("xxxbcadefs", set));
printf("%d\n", strcspn("1234567890", set));

}

See Also
strspn()

Return Value
Returns the length of the segment.
314

 9
STRLEN
Synopsis

#include <string.h>

size_t strlen (const char * s)

Description
The strlen() function returns the number of characters in the string s, not including the null
terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

Return Value
The number of characters preceding the null terminator.
HI-TECH PICC Lite compiler 315

Library Functions

 9
STRNCAT
Synopsis

#include <string.h>

/* For baseline and midrange processors */
char * strncat (char * s1, const char * s2, size_t n)

/* For high-end processors */
far char * strncat (far char * s1, const char * s2, size_t n)

Description
This function appends (catenates) string s2 to the end of string s1. At most n characters will be copied,
and the result will be null terminated. s1 must point to a character array big enough to hold the resultant
string.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strncat(s1, s2, 5);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strcpy(), strcmp(), strcat(), strlen()

Return Value
The value of s1 is returned.
316

 9
STRNCMP, STRNICMP
Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)
int strnicmp (const char * s1, const char * s2, size_t n)

Description
The strcmp() function compares its two, null terminated, string arguments, up to a maximum of n
characters, and returns a signed integer to indicate whether s1 is less than, equal to or greater than s2.
The comparison is done with the standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

int i;

i = strcmp("abcxyz", "abcxyz");
if(i == 0)

printf("Both strings are equal\n");
else if(i > 0)

printf("String 2 less than string 1\n");
else

printf("String 2 is greater than string 1\n");
}

See Also
strlen(), strcmp(), strcpy(), strcat()

Return Value
A signed integer less than, equal to or greater than zero.

Note
Other C implementations may use a different collating sequence; the return value is negative, zero or
positive, i.e. do not test explicitly for negative one (-1) or one (1).
HI-TECH PICC Lite compiler 317

Library Functions

 9
STRNCPY
Synopsis

#include <string.h>

/* For baseline and midrange processors */
char * strncpy (char * s1, const char * s2, size_t n)

/* For high-end processors */
far char * strncpy (far char * s1, const char * s2, size_t n)

Description
This function copies a null terminated string s2 to a character array pointed to by s1. At most n
characters are copied. If string s2 is longer than n then the destination string will not be null terminated.
The destination array must be large enough to hold the entire string, including the null terminator.

Example
#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strncpy(buffer, "Start of line", 6);
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also
strcpy(), strcat(), strlen(), strcmp()

Return Value
The destination buffer pointer s1 is returned.
318

 9
STRPBRK
Synopsis

#include <string.h>

/* For baseline and midrange processors */
const char * strpbrk (const char * s1, const char * s2)

/* For high-end processors */
char * strpbrk (const char * s1, const char * s2)

Description
The strpbrk() function returns a pointer to the first occurrence in string s1 of any character from
string s2, or a null pointer if no character from s2 exists in s1.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strpbrk(str+1, "aeiou");

}
}

Return Value
Pointer to the first matching character, or NULL if no character found.
HI-TECH PICC Lite compiler 319

Library Functions

 9
STRRCHR, STRRICHR
Synopsis

#include <string.h>

/* For baseline and midrange processors */
const char * strrchr (char * s, int c)
const char * strrichr (char * s, int c)

/* For high-end processors */
char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description
The strrchr() function is similar to the strchr() function, but searches from the end of the string
rather than the beginning, i.e. it locates the last occurrence of the character c in the null terminated string
s. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

The strrichr() function is the case-insensitive version of this function.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strrchr(str+1, ’s’);

}
}

See Also
strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value
A pointer to the character, or NULL if none is found.
320

 9
STRSPN
Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description
The strspn() function returns the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strspn("This is a string", "This"));
printf("%d\n", strspn("This is a string", "this"));

}

See Also
strcspn()

Return Value
The length of the segment.
HI-TECH PICC Lite compiler 321

Library Functions

 9
STRSTR, STRISTR
Synopsis

#include <string.h>

/* For baseline and midrange processors */
const char * strstr (const char * s1, const char * s2)
const char * stristr (const char * s1, const char * s2)

/* For high-end processors */
char * strstr (const char * s1, const char * s2)
char * stristr (const char * s1, const char * s2)

Description
The strstr() function locates the first occurrence of the sequence of characters in the string pointed
to by s2 in the string pointed to by s1.

The stristr() routine is the case-insensitive version of this function.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strstr("This is a string", "str"));
}

Return Value
Pointer to the located string or a null pointer if the string was not found.
322

 9
STRTOK
Synopsis

#include <string.h>

/* For baseline and midrange processors */
char * strtok (char * s1, const char * s2)

/* For high-end processors */
far char * strtok (far char * s1, const char * s2)

Description
A number of calls to strtok() breaks the string s1 (which consists of a sequence of zero or more text
tokens separated by one or more characters from the separator string s2) into its separate tokens.

The first call must have the string s1. This call returns a pointer to the first character of the first token,
or NULL if no tokens were found. The inter-token separator character is overwritten by a null character,
which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a null pointer. These calls start searching from
the end of the last token found, and again return a pointer to the first character of the next token, or NULL
if no further tokens were found.

Example
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;
char * buf = "This is a string of words.";
char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);
while(ptr != NULL) {

printf("%s\n", ptr);
ptr = strtok(NULL, sep_tok);

}
}

Return Value
Returns a pointer to the first character of a token, or a null pointer if no token was found.
HI-TECH PICC Lite compiler 323

Library Functions

 9
Note
The separator string s2 may be different from call to call.
324

 9
TAN
Synopsis

#include <math.h>

double tan (double f)

Description
The tan() function calculates the tangent of f.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also
sin(), cos(), asin(), acos(), atan(), atan2()

Return Value
The tangent of f.
HI-TECH PICC Lite compiler 325

Library Functions

 9
TIME
Synopsis

#include <time.h>

time_t time (time_t * t)

Description
This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time in
seconds since 00:00:00 on Jan 1, 1970. If the argument t is not equal to NULL, the same value is stored
into the object pointed to by t.

Example
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also
ctime(), gmtime(), localtime(), asctime()

Return Value
This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1, 1970.

Note
The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.
326

 9
TOLOWER, TOUPPER, TOASCII
Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c)

Description
The toupper() function converts its lower case alphabetic argument to upper case, the tolower()
routine performs the reverse conversion and the toascii() macro returns a result that is guaranteed
in the range 0-0177. The functions toupper() and tolower() return their arguments if it is not an
alphabetic character.

Example
#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)
{

char * array1 = "aBcDE";
int i;

for(i=0;i < strlen(array1); ++i) {

printf("%c", tolower(array1[i]));
}
printf("\n");

}

See Also
islower(), isupper(), isascii(), et. al.
HI-TECH PICC Lite compiler 327

Library Functions

 9
VA_START, VA_ARG, VA_END
Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description
These macros are provided to give access in a portable way to parameters to a function represented in a
prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function are
not known at compile time.
The rightmost parameter to the function (shown as parmN) plays an important role in these macros, as
it is the starting point for access to further parameters. In a function taking variable numbers of
arguments, a variable of type va_list should be declared, then the macro va_start() invoked with
that variable and the name of parmN. This will initialize the variable to allow subsequent calls of the
macro va_arg() to access successive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a type name which
is the type that the next parameter is expected to be. Note that any arguments thus accessed will have
been widened by the default conventions to int, unsigned int or double. For example if a character
argument has been passed, it should be accessed by va_arg(ap, int) since the char will have been
widened to int.

An example is given below of a function taking one integer parameter, followed by a number of other
parameters. In this example the function expects the subsequent parameters to be pointers to char, but
note that the compiler is not aware of this, and it is the programmers responsibility to ensure that correct
arguments are supplied.

Example
#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{

va_list ap;

va_start(ap, a);
while(a--)

puts(va_arg(ap, char *));
328

 9
va_end(ap);
}

void
main (void)
{

pf(3, "Line 1", "line 2", "line 3");
}
HI-TECH PICC Lite compiler 329

Library Functions

 9
XTOI
Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description
The xtoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example
#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = xtoi(buf);
printf("Read %s: converted to %x\n", buf, i);

}

See Also
atoi()

Return Value
A signed integer. If no number is found in the string, zero will be returned.
330

 9
HI-TECH PICC Lite compiler 331

Library Functions

 9
332

Index
Symbols
! macro quote character 174
#asm directive 134
#define 96
#endasm directive 134
#pragma directives 145
#undef 106
$ assembler label character 157
$ location counter symbol 158
% macro argument prefix 174
& in a macro 171
. psect address symbol 185
... symbol 137
.as files 84
.c files 84
.cmd files 92, 194
.crf files 95, 154
.hex files 100, 101, 106
.lib files 84, 109, 192, 194
.lnk files 45, 188
.lst files 81, 95
.map files 83
.obj files 84, 185, 194
.opt files 153
.pre files 80
.prj files 83, 88, 149
.pro files 103
.rlf files 26
.sdb files 25
.sym files 111, 184, 187
.ubr files 106
/ psect address symbol 185

;; macro comment suppresser 171
<<>>menu 59, 73

About HTLPIC 73
Setup... 73

<> macro argument list 174
? assembler special label character 157
??nnnn type symbols 158, 172
?_xxxx type symbols 137, 190
?a_xxxx type symbols 140, 168, 190
@ address construct 120, 136
@ command line redirection 92
_ assembler special label character 157
__Bxxxx type symbols 37, 145
__CONFIG macro 113
__Hxxxx type symbols 35, 145
__IDLOC macro 113
__Lxxxx type symbols 35, 145
_xxxx type symbols 143

Numerics
24-bit floating point format 119
32-bit floating point format 119

A
ABS 260
abs psect flag 164, 165
abs psect flags 34
absolute addresses 166
absolute object files 185
absolute psects 162, 164, 165
absolute variables 43, 120, 147
HI-TECH PICC Lite compiler 333

bits 117
structures 121

ACOS 261
addresses

link 180, 185
link addresses

load 32
load 180, 185
unresolved in listing file 26

addressing unit size 165
align directive 172
alignment

psects 165
within psects 172

ANSI standard
conformance 105
disabling 81
divergence from 109
implementation-defined behaviour 126

argument area 136
size of 169

argument passing 136
ASCII characters 118
ASCII table 87
ASCTIME 262
ASIN 264
asm() C directive 134
ASPIC

controls 175
table of 175

directives 162
processor 132
table of 163

expressions 160
generated symbols 158
labels 158
location counter 158
numbers and bases 157

operators, table of 161
options 153
options, table of 154
psect flags

abs 34
global 33
local 33
ovlrd 33
reloc 34

special characters 157
statements 160
symbols 158

ASPIC controls
cond 175
expand 175
include 175
list 176
nocond 176
noexpand 176
nolist 176
subtitle 177
table of 175
title 176

ASPIC directives
align 172
db 160, 166
defl 166
ds 167
dw 167
else 169
elseif 169
end 164
endif 169
endm 170
equ 166
fnaddr 167
fnarg 167
fnbreak 168
334

Index
fncall 168
fnconf 168
fnindir 169
fnroot 169
fnsize 132, 169
global 132, 164
if 169
irp 172
irpc 172
local 158, 171
macro 170
org 166
pagesel 174
processor 174
psect 30, 132, 160, 164
psect flags

abs 164, 165
bit 165
class 165
delta 165
global 165
limit 165
ovrld 165
pure 165
reloc 165
size 165
space 165
with 165

rept 172
set 166
signat 174
signat directive 134

ASPIC options
-A 153
-C 153
-Cchipinfo 154
-E 154
-Flength 154
-H 154

-I 155
-Llistfile 155
-O 155
-Ooutfile 155
-processor 153
-Raddress 155
-S 155
table of 154
-U 155
-V 155
-Wwidth 155
-X 155

assembler 25, 153
accessing C objects 133
base specifiers 156
character set 156
command line options 153
conditional 170
constants 156

character 157
double 156
float 156
hexadecimal 156

controls 175
table of 175

default radix 156
delimiters 157
destination operand 156
differences between Microchip 156
directives 162
expressions 160
generating from C 105
identifiers 157, 158

significance of 158
include files 175
initializing

bytes 166
words 167

in-line 133, 134
HI-TECH PICC Lite compiler 335

label field 160
labels 158

numeric 159
symbolic 158

line numbers 155
macros 173
mixing with C 132
MPLAB-ICD 155
operators, table of 161
optimizer 25, 153, 155
options from PICL 94
options, table of 154
pseudo-ops 162
radix specifiers 156
repeating macros 172
reserving

bytes 166
locations 167
words 167

special characters 157
strings 160
symbols 164
user-defined symbols 158

assembler code 155
called by C 132

assembler errors
suppressing 155

assembler files 20
preprocessing 81, 103
using hexadecimal constants 154

assembler labels 158
assembler listings 26, 81, 95, 155

disabling macro expansion 176
excluding conditional code 176
expanding macros 175
including conditional code 175
page length 154
page width 155

subtitle 177
title 176
turning off 176
turning on 176

assembler options 94, 153
ATAN 265
ATAN2 266
ATOF 267
ATOI 268
ATOL 269
auto indent mode 67
auto variable area 136
auto variables 139

bank location 124
symbol names 168

auto-repeat rate, mouse 73
autosave 74

B
ballistic threshold, mouse 73
bank1 qualifier 123, 124
bank2 qualifier 123, 124
bank3 qualifier 123, 124
banks

chipinfo file 136
RAM banks 124

bases
assembler 157
C source 115

batch files 98
begin block 70
biased exponent 120
binary constants

assembler 156
C 115

binary files 95
bit
336

Index
keyword 117
psect flag 165

bit instructions 114
bit types 117, 121, 142, 165

absolute 117
bit-addressable Registers 117
bitwise complement operator 128
block commands 69

begin 70
comment/uncomment 71
copy 70
delete 70
end 70
go to end 70
go to start 70
hide/display 70
indent 71
key equivalents

table of 69
move 70
outdent 71
read 71
write 71

block hide 71
boolean types 115
bss psect 180

clearing 180
button

continue 65
fix 65
help 65
hide 65
next 67
previous 67
search 67

buttons 59

C
C mode 67
C source listings 21, 81

example of 21
calculator 86
call graph 131, 168, 169, 190
CEIL 270
char types 118

signed 105
checksum specifications 195
chicken sheds 158
chipinfo files 154
class psect flag 165
classes 183

address ranges 182
boundary argument 187
upper address limit 187

clear clipboard 72
clearing bits 114
clipboard 69, 71

clear 76
copy 74
cut 74
delete selection 75
hide 75
paste 75
selecting text 71
show 76

clipboard commands 72
clear 72
copy 70, 72
cut 72
delete 70, 73
hide 72
paste 72
show 72

clist utility 21
HI-TECH PICC Lite compiler 337

clock, enabling 59
clrtext psect 141
clutches 42
code generator 24
colours 53

attributes, table of 54
settings 55
values, table of 54

command files
PICL 92

command lines
HLINK, long command lines 188
long 92, 194
verbose option 106

commands
block 69
clipboard 72
HTLPIC keyboard 69

comment block 71
commenting code 76
comments

block 71
C++ style 71, 76

compile menu 63, 79
compile and link 79
compile to .AS 80
compile to .OBJ 79
disable non-ANSI features 81
generate assembler listing 81
generate C source listing 81
identifier length 80
optimization 80
preprocess only to .PRE 80
stop on warnings 80
warning level 80

compiled stack 190
compiler

options 92

options help 90
overview 17
release notes 90
technical support 89

compiler errors 98
format 97

compiler generated psects 140
compiling

to assembler file 80, 105
to executable file 79
to object file 79, 95
to preprocessor file 80

cond assembler control 175
conditional assembly 169
config psect 141
configuration

fuses 113
word 141

console I/O functions 150
const

keyword 122
pointers 122, 125, 126

constants
assembler 156
C specifiers 115
placement of 123

constn psect 123, 141
context retrieval 130
context saving 129

in-line assembly 149
midrange 130

continue button 65
copy 72
copy block 70
copyright notice 104
COS 271
COSH 272
creating
338

Index
libraries 193
projects 83
source files 74

CREF 154, 196
command line arguments 196
options 197

-Fprefix 197
-Hheading 197
-Llen 197
-Ooutfile 197
-Pwidth 198
-Sstoplist 198
-Xprefix 198

cromwell 198
available format options 198

cromwell application 28
cromwell options 199

-B 200
-C 199
-D 199
-E 200
-F 200
-Ikey 200
-L 200
-M 200
-Okey 200
-Pname 199
table of 199
-V 200

cross reference
generating 196
generation 153
list utility 196

cross reference listings 95
excluding header symbols 197
excluding symbols 198
headers 197
output name 197

page length 197
page width 198

ctextn psect 140
CTIME 273
cut 72

D
data psect 180

copying 180
data types 115

16-bit integer 118
32-bit integer 118
8-bit integer 118
bit 117, 121, 142, 165
char 118
floating point 119
int 118
long 118
short 118
table of 115

db directive 160, 166
debug information 25, 78, 99, 111, 155
default psect 162
defl directive 166
delete block 70
delete selection 73
delta psect flag 45, 165, 183
dependency information 27, 79
DI 274
di macro 131
directives

asm, C 134
assembler 162
table of 163

DIV 275
DOS

command line limitations 52
HI-TECH PICC Lite compiler 339

commands 85
defining commands 87
free memory 73
shell 85

double type
size of 96

ds 167
DUMP 26
dw 167

E
edit menu 74

C colour coding 77
comment/uncomment 76
copy 74
cut 74
delete selection 75
go to line 76
hide 75
indent 76
outdent 76
paste 75
replace 76
search 75
set tab size 76
show clipboard 76

edit window 66
editor 66

auto indent mode 67
autosave 74
begin block 70
block commands 69
block hide/display 70
C mode 67
clear clipboard 72
clipboard 69, 71
colours 53

attributes, table of 54
settings, table of 55
values, table of 54

comment/uncomment block 71
commenting/uncommenting code 76
content region 66
copy 72, 74
copy block 70
cut 72, 74
delete block 70
delete selection 73, 75
end block 70
frame area 66
go to block end 70
go to block start 70
go to line 76
hide 72, 75
hide block 71
indent

block 71
mode 67

indenting 76
insert mode 67
keyboard commands 67
keys

help 89
table of 68, 69

move block 70
new 74
opening recent files 74
outdent block 71
outdenting 76
overwrite mode 67
paste 72, 75
read block 71
replace text 76
save 74
search 67, 75
selecting text 71
340

Index
show clipboard 72, 76
status line 66
syntax highlighting 77
tab size 76
write block 71
zoom command 69

EEPROM_READ 276
EEPROM_WRITE 276
EI 274
ei macro 131
ellipsis symbol 137
else directive 169
elseif directive 169
end block 70
end directive 164
end_init psect 141
endif directive 169
endm directive 170
enhanced S-Record 94
enhanced symbol files 184
environment variable

HTC_ERR_FORMAT 97
HTC_WARN_FORMAT 97
TEMP 52

equ directive 160, 166
equating symbols 166
error files 98

creating 183
error messages

formatting 97
LIBR 195
used by HPDPIC 154

errors
auto-fix 65
format 97
redirecting 98

EVAL_POLY 277
EXP 278

expand assembler control 175
exponent 119
expressions

assembler 160
relocatable 160

extern keyword 132
external ROM

HTLPIC 78

F
FABS 279
fastcall functions 140
fcall mnemonic 155, 156, 174
file formats 17, 78

American Automation hex 94
assembler 84
assembler listing 81, 95
binary 95
C source 84
C source listings 81
command 92, 194
creating with cromwell 198
cross reference 153, 196
cross reference listings 95
DOS executable 185
enhanced Motorola S-Record 94
enhanced symbol 184
Intel hex 100
library 84, 109, 192, 194
link 188
map 83, 189
Motorola hex 101
object 84, 95, 185, 194
optimizer 153
preprocessor 80, 103
project 83, 88, 149
project files 83
HI-TECH PICC Lite compiler 341

prototype 103
relocatable listing file 26
specifying 102, 155
S-Record files 101
symbol 184
symbol files 111
symbolic debug 25
Tektronix hex 106
TOS executable 185
UBROF 106

file menu 73
autosave 74
clear pick list 74
new 74
open 73
pick list 74
quit 74
save 74
save as 74

fix button 65
fixing errors 65
fixup 28
flags

psect 164
float type

size of 96
float_text psect 141
float24 pseudo-function 157
floating point data types 78, 119

24-bit format 96, 119
32-bit format 96, 119
biased exponent 120
exponent 120
format 119
format examples 119
mantissa 119

floating point operations 141
FLOOR 280
fnaddr directive 167

fnarg directive 167
fnbreak directive 168
fncall directive 168
fnconf directive 168, 191
fnindir directive 169
fnroot directive 169, 191
fnsize directive 169
FREXP 281
function

return values 137
16-bit 138
32-bit 138
8-bit 138
structures 138

function calls 168
indirect 169

function parameters 124, 137
function pointers 125
function prototypes 135, 174

ellipsis 137
function return values 137
functions

argument area 137
argument passing 136
calling conventions 139
fastcall 140
getch 150
interrupt 129
interrupt qualifier 129
kbhit 150
main 143, 169
putch 150
recursion 109
return values 137
returning from 129
root 169
signatures 134, 174
written in assembler 132
342

Index
G
GET_CAL_DATA 282
getch function 150
global directive 164
global optimization 25, 106
global psect flag 33, 165
global symbols 180
GMTIME 283
go to line 76
grepping files 86

H
hardware

initialization 144
header files 18

pic.h 118
problems in 105

help
button 65

help for PICL 99
help menu 88

C library reference 88
editor keys 89
HI-TECH Software 88
HTLPIC 88
PICL compiler options 90
release notes 90
technical support 89

hex files
multiple 183

hide
block 71, 72
button 65

HLINK
modifying options 44
-Pspec 35

HLINK options 181
-Aclass=low-high 38, 182
-Cpsect=class 183
-Dsymfile 183
-Eerrfile 183
-F 183
-Gspec 184
-H+symfile 184
-Hsymfile 184
-Jerrcount 184
-K 185
-L 185
-LM 185
-Mmapfile 185
-N 185
-Nc 185
-Ns 185
-Ooutfile 185
-Pspec 185
-Qprocessor 187
-Sclass=limit[,bound] 187
-Usymbol 188
-Vavmap 188
-Wnum 188
-X 188
-Z 188

hot keys 56
HTLPIC, table of 57
windows, table of 58

HTC_ERR_FORMAT 97
HTC_WARN_FORMAT 97
HTLPIC 51

<<>> menu 73
colours 53

attributes, table of 54
settings, table of 55
values, table of 54

command line arguments 52
HI-TECH PICC Lite compiler 343

editor 66
external ROM addresses 78
hardware requirements 52
help 88
hot keys 56
hot keys, table of 57
initialization file 53, 59
licence details 73
loading project file 52
menu bar 53
menus 73
mouse driver 53
moving windows 58
projects 81
pull down menus 53
quitting 74
resizing windows 58
screen mode 53
screen resolution 52
selecting windows 56
starting 51
tutorial 60
version number 59
window hot keys 58
windows 51, 52

htlpic.ini 53, 59

I
I/O

console I/O functions 150
serial 150
STDIO 150

ICD support 78, 99, 150
ID locations 113, 141
idata_n psect 140
identifier length 102
identifiers

assembler 158
length 80

idloc psect 141
IEEE floating point format 78, 119
if directive 169
Implementation-defined behaviour 126

division and modulus 127
shifts 126

include assembler control 175
indent

block 71
mode 67

indenting code 76
ini file 17, 53, 59, 136

setting colours in 53
init psect 141
in-line assembly 129, 133, 134
insert mode 67
instructions, bit 114
int data types 118

accessing bits within 114
int_ret psect 130, 141
intcode psect 130, 141
integral promotion 127
intentry psect 130, 141
interrupt functions 129

calling from main line code 130
calling functions from 129
context retrieval 130
context saving 129, 149
midrange 129
returning from 129

interrupt keyword 129
interrupt level 130
interrupt_level directive 130
interrupts 129

enabling 131
handling in C 129
344

Index
intsave psect 130, 142
intsave_n psect 130, 142
irp directive 172
irpc directive 172
ISALNUM 285
ISALPHA 285
ISDIGIT 285
ISLOWER 285

J
Japanese character handling 145
JIS character handling 145
jis pragma directive 145

K
KBHIT 287
kbhit function 150
keyword

auto 139
bank1 124
bank2 124
bank3 124
bit 117
const 122
disabling non-ANSI 105
extern 132
interrupt 129
persistent 123, 124, 125
volatile 122

L
label field 160
labels 158

ASPIC 158
local 171

re-defining 166
relocatable 162

LDEXP 288
LDIV 289
length of identifiers 80
LIBR 192, 193

command line arguments 193
error messages 195
listing format 194
long command lines 194
module order 195

librarian 192
command files 194
command line arguments 193, 194
error messages 195
listing format 194
long command lines 194
module order 195

libraries
adding files to 193
C reference 88
creating 193
deleting files from 193
format of 192
linking 188
listing modules in 194
module order 195
naming convention 109
order of 84
scanning additional 100
standard 109
used in executable 185

library
difference between object file 192
manager 192
on-line manual 88

Library functions
ABS 260
HI-TECH PICC Lite compiler 345

ACOS 261
ASCTIME 262
ASIN 264
ATAN 265
ATAN2 266
ATOF 267
ATOI 268
ATOL 269
CEIL 270
COS 271
COSH 272
CTIME 273
DI 274
DIV 275
EEPROM_READ 276
EEPROM_WRITE 276
EI 274
EVAL_POLY 277
EXP 278
FABS 279
FLOOR 280
FREXP 281
GET_CAL_DATA 282
GMTIME 283
ISALNUM 285
ISALPHA 285
ISDIGIT 285
ISLOWER 285
KBHIT 287
LDEXP 288
LDIV 289
LOCALTIME 290
LOG 292
LOG10 292
MEMCHR 293
MEMCMP 294
MEMCPY 296
MEMMOVE 297

MEMSET 298
MODF 299
PERSIST_CHECK 300
PERSIST_VALIDATE 300
POW 301
PRINTF 302
RAND 305
SIN 306
SINH 272
SPRINTF 307
SQRT 308
SRAND 309
STRCAT 310
STRCHR 311
STRCMP 312
STRCPY 313
STRCSPN 314
STRICHR 311
STRICMP 312
STRISTR 322
STRLEN 315
STRNCAT 316
STRNCMP 317
STRNCPY 318
STRNICMP 317
STRPBRK 319
STRRCHR 320
STRRICHR 320
STRSPN 321
STRSTR 322
STRTOK 323
TAN 325
TANH 272
TIME 326
TOASCII 327
TOLOWER 327
TOUPPER 327
VA_ARG 328
346

Index
VA_END 328
VA_START 328
XTOI 330

licence
agreement 88
details 73

line numbers
assembler 155
C source 81

link addresses 32, 180, 185
linker 27, 29, 179

command files 188
command line arguments 188
invoking 188
long command lines 188
modifying options 44
options from PICL 101
passes 192
symbols handled 180

linker defined symbols 145
linker errors

aborting 184
undefined symbols 185

linker options 34, 85, 181
-Aclass=low-high 38, 182, 187
-Cpsect=class 183
-Dsymfile 183
-Eerrfile 183
-F 183
-Gspec 184
-H+symfile 184
-Hsymfile 184
-I 185
-Jerrcount 184
-K 185
-L 185
-LM 185
-Mmapfile 185
-N 185

-Nc 185
-Ns 185
numbers in 182
-Ooutfile 185
-P 35
-Pspec 185
-Qprocessor 187
-Sclass=limit[, bound] 187
-Usymbol 188
-Vavmap 188
-Wnum 188
-X 188
-Z 188

linking programs 83, 135
list files

assembler 26, 95
C source 21
generating 155

list, assembler control 176
little endian format 115, 118, 119
ljmp mnemonic 155, 156, 174
load addresses 32, 180, 185
local directive 158, 171
local psect flag 33
local psects 180
local symbols 106, 173

suppressing 155, 188
local variables 139

area size 169
auto 139
debugging information for 78
static 140

LOCALTIME 290
location counter 158, 166
LOG 292
LOG10 292
long data types 118
HI-TECH PICC Lite compiler 347

M
macro

configuration 113
ID location 113

macro directive 160, 170
macro names for DOS commands 88
macros 170

! character 174
% character 174
& symbol 171
< and > characters 174
bitclr 114
bitset 114
concatenation of arguments 171
disabling in listing 176
expanding in listings 155, 175
interrupt 131
invoking 174
nul operator 171
predefined 111
preprocessor 96
repeat with argument 172
suppressing comments 171
undefining 106
unnamed 172

main function 143, 169
make 82
make menu 81

CPP include paths 85
CPP pre-defined symbols 84
library file list 84
linker options 85
load project 83
make 82
map file name 83
new project 83
object file list 84

objtohex options 85
output file name 83
re-link 83
re-make 83
rename project 83
save project 83
source file list 84
symbol file name 84

mantissa 119
map file options 78
map files 104, 185

call graphs 190
example of 189
generating 101
naming 83
processor selection 187
segments 189
sorting symbols 78
symbol tables in 185
width of 188

MEMCHR 293
MEMCMP 294
MEMCPY 296
memmap 200
memmap options

-P 201
table of 201
-Wwid 201

MEMMOVE 297
memory

DOS 73
external ROM 78
specifying ranges 182
unused 185
usage 86, 104

MEMSET 298
menu

<<>> 59
348

Index
compile 63, 79
edit 74
file 73
help 88
make 81
mouse operation 55
options 77
run 85
setup 53, 59
system 73
utility 85

menu bar 53
menus

accessing with keyboard 54
hot keys, for 56
HTLPIC 73
pull down 53

midrange pointers 125
mnemonics 156
mnemonics additional 156
MODF 299
modules

in library 192
list format 194
order in library 195
used in executable 185

mouse
auto-repeat rate 73
ballistic threshold 73
driver 53, 73
sensitivity 59

move block 70
moving windows 58
MPLAB

debugging information 78, 102, 150
ICD support 78, 99, 150
symbol files 84

multiple hex files 183

multiple source files 81, 84

N
new files 74
next button 67
nocond assembler control 176
noexpand assembler control 176
nojis pragma directive 145
nolist assembler control 176
non-volatile RAM 123
numbers

assembler 157
in C source 115
in linker options 182

numeric constants 156
numeric labels 159
nvram 123
nvram psect 142

O
object code, version number 185
object files 25, 84, 95

absolute 25, 185
displaying 26
including line numbers 155
precompiled 84
relocatable 25, 179
specifying object filenames 155
suppressing local symbols 155
symbol only 183

OBJTOHEX 28, 195
command line arguments 195
table of options 196

objtohex options 85
optimization 80

assembler 25, 153, 155
HI-TECH PICC Lite compiler 349

explanation of 88
global 106
peephole 25
post-pass 102

options menu 77
fake local symbols 78
floating point type 78
long formats in printf 78
map and symbol file options 78
output file type 78
ROM addresses 78
save dependency information 79
select processor 77
sort map by address 78
source level debug info 78
suppress local symbols 78

org directive 166
outdent block 71
outdenting code 76
output file formats 28, 185

HTLPIC 78
specifying 102, 195
table of 28, 111

overlaid memory areas 185
overlaid psects 165
overwrite mode 67
ovlrd psect flag 33
ovrld psect flag 165

P
p1 application 22
page

length 154
width 155

pages
chipinfo file 136

pagesel directive 174

parameter passing 132, 136, 137
parser 22

output 22
paste 72
peephole optimization 25
PERSIST_CHECK 300
PERSIST_VALIDATE 300
persistent keyword 123, 124, 125
persistent variables 142
PIC assembler language 156

functions 132
pic.h 118
picinfo.ini file 109, 136, 154
PICL

command format 91
displaying help 99
file types 91
long command lines 92
options 92
predefined macros 111
redirecting options to 92
supported data types 115

PICL options
-A 94
-AAHEX 94
-ASMLIST 95
-BIN 95, 135
-C 95, 135
-CR 95
-D 96
-D24 96, 119
-D32 119
-E 97, 98
-Efile 98
-FAKELOCAL 99, 150
-G 99, 111
-HELP 99
-I 100
350

Index
-ICD 99, 150
-INTEL 100
-L 100, 101, 148
-LF 101
-LL 101
-M 101
-MOT 101
-N 102
-NO_STRING_PACK 102
-NORT 102
-O 102, 110, 135
-P 102
-PRE 103
-processor 94
-PROTO 103
-PSECTMAP 104, 136
-q 104
-S 105, 135
-SIGNED_CHAR 105, 118
-STRICT 105
-TEK 106
-U 106
-UBROF 106
-V 106
-W 106
-X 106
-Zg 106

PICL output formats
American Automation Hex 94, 110
Binary 95, 110
Bytecraft 110
Intel Hex 100, 110
Motorola Hex 101, 110
Tektronix Hex 106, 110
UBROF 106, 110

pointers
midrange 125

bank2 125

bank3 125
const 125
function 125
RAM 125

to const 126
post-pass optimizer 102
POW 301
powerup psect 140
powerup routine 144

source for 144
pragma directives 145

table of 147
pre-compiled object files 84
predefined symbols

preprocessor 111
preprocessing 21, 80, 81, 102

assembler files 102
preprocessor

macros 96
output 21
path 85, 100

preprocessor directives 145
#asm 134
#endasm 134
table of 146

preprocessor symbols 84
predefined 111

previous button 67
PRINTF 302
printf

float support 100
format checking 145
long support 78, 100

printf_check pragma directive 145
printing

longs 78
processor selection 77, 94, 174, 187
program sections 160
HI-TECH PICC Lite compiler 351

project 83
project files 83, 88, 149
projects 81

building 82
creating 83
defining preprocessor symbols 84
libraries contained in 84
linker options 85
loading 83
map file name 83
object files contained in 84
options in 77
output file name 83
path to include files 85
re-building 83
renaming 83
saving 83
source files contained in 84
symbol file name 84

psect
bss 180
clrtext 141
config 141
constn 141
ctextn 140
data 180
end_init 141
float_text 141
idata_n 140
idloc 141
init 141
int_ret 130, 141
intcode 130, 141
intentry 130, 141
intsave 130, 142
intsave_n 130, 142
nvram 142
powerup 140
rbit_n 142

rbss_n 141
rdata_n 141
strings 141
stringtable 141
struct 142
temp 142
text 141
textn 140
xtemp 142

psect directive 30, 160, 164
psect flags 164, 187
psect pragma directive 44, 147, 149
psects 25, 29, 160, 179

absolute 162, 164, 165
alignment 165
basic kinds 179
class 38, 182, 183, 187
compiler generated 140
default 162
delta value of 45, 183
differentiating ROM and RAM 165
grouping 33
linking 32, 179
local 180
maximum size of 165
overlaid 33
page placement 165
positioning 33
relocation 28
renaming 147, 149
specifying address ranges 38, 187
specifying addresses 35, 182, 185
struct 138
types of 31
user defined 40, 147, 149

pseudo-function, float24 157
pseudo-ops 162

table of 163
pull down menus 53
352

Index
pure psect flag 165
putch function 150

Q
qualifiers

and auto variables 139
auto 139
bank1 123, 124
bank2 123, 124
bank3 123, 124
const 122, 125
persistent 124, 125
volatile 122, 125

quiet mode 104
quitting HTLPIC 74

R
radix specifiers

assembler 156
C source 115

RAM
Bank 1 124
Bank 2 124
Bank 3 124

RAM pointers 125
RAND 305
rbit_n psect 142
rbss_n psect 140, 141
rdata_n psect 141
read block 71
recently opened files 74
recursion 109
redirecting errors 98
redirecting options to PICL 92
register

names 158

SFR 158
usage 136
W 158

regsused pragma directive 149
release notes 90
RELOC 184, 185
reloc psect flag 165
reloc psect flags 34
relocatable

labels 162
object files 179

relocatable listing file 26
relocation 28, 179
relocation information

preserving 185
renaming psects 147, 149
replacing text 76
rept directive 172
reset

code executed after 144
resizing windows 58
RETFIE instruction 129
RETLW instruction 129
RETURN instruction 129
return values 137
ROM

access of objects in 123
pages 174
placing strings in 122

ROM pages 155
root functions 169
run menu 85

DOS command 85
DOS shell 85

runtime files 84
runtime module 142

disabling 102
source for 144
HI-TECH PICC Lite compiler 353

S
saving files 74
scroll bar 59
search button 67
search path

header files 100
searching files 75, 86
segment selector 184
segments 43, 184, 189
selecting text 71
serial I/O 150
set directive 160, 166
setting bits 114
setting tab size 76
setup menu 53, 59
SFRs 158
shift operations

result of 126
show clipboard 72, 76
signat directive 135, 174
signature checking 134
signatures 174
signed char variables 105
SIN 306
SINH 272
size error message, suppressing 155
size psect flag 165
sound, enabling 59
source files 84
source listings 81
source modules 21
space psect flag 165
special characters 157
special function registers 158
SPRINTF 307
sprintf

float support 101

long support 78, 101
SQRT 308
SRAND 309
S-Record files 101
standard libraries 109
standard symbols 85
startup module 84, 142

clearing bss 180
data copying 180

statements
assembler 160

static variables 140
status line

indent/C mode indicator 67
insert/overwrite indicator 67
WordStar indicator 66

STDIO 150
STRCAT 310
STRCHR 311
STRCMP 312
STRCPY 313
STRCSPN 314
STRICHR 311
STRICMP 312
string packing

disabling 102
string search 75, 86
strings 122

assembler 160
placement 122, 123

strings psect 141
stringtable psect 141
STRISTR 322
STRLEN 315
STRNCAT 316
STRNCMP 317
STRNCPY 318
STRNICMP 317
354

Index
STRPBRK 319
STRRCHR 320
STRRICHR 320
STRSPN 321
STRSTR 322
STRTOK 323
struct psect 138, 142
structures 120

qualifiers 120
subtitle assembler control 177
symbol files 99, 111

debug info 78
enhanced 184
generating 184
local symbols in 188
MPLAB specific 99
naming 84
old style 183
options 78
producing MPLAB specific 78
removing local symbols from 78, 106
removing symbols from 187
source level 99

symbol tables 111, 185, 188
sorting 185
sorting addresses 78

symbolic labels 158
symbols

ASPIC generated 158
assembler 158
equating 166
global 180, 194
linker defined 145
MPLAB specific 150
pre-defined 84
undefined 188

syntax highlighting 77
system menu 73

T
tab size 76
TAN 325
TANH 272
technical support 89
Tektronix hex files 106
temp path 18, 52
temp psect 142
text psect 141
text search 75, 86
textn psect 140
TIME 326
title assembler control 176
TOASCII 327
TOLOWER 327
TOUPPER 327
TSR programs 85
tutorial

compiling 63
errors 64
getting started 60

typographic conventions 15

U
UBROF files 106
uncomment block 71
uncommenting code 76
undefined symbols

assembler 155
unions 120
utilities 179
utility menu 85

ascii table 87
calculator 86
define user commands 87
memory usage map 86
HI-TECH PICC Lite compiler 355

string search 86

V
VA_ARG 328
VA_END 328
VA_START 328
variable argument list 137
variables

absolute 43, 120
accessing from assembler 133
auto 139
bit 117
char types 118
floating point types 119
int types 118
local 139
persistent 142
static 140

verbose 106
version number 59
video card information 73
volatile keyword 122, 125

W
W register 136, 158
warning level 80, 106

setting 188
warnings 80

level displayed 106
suppressing 188

window
edit 66
error 64

windows
buttons in 59
moving 58

resize/move hot key 58
resizing 58
scroll bar in 59
selecting 56
zooming 59

with psect flag 165
word boundaries 165
WordStar

block commands 69
indicator 66

write block 71

X
xtemp psect 142
XTOI 330

Z
zoom 59
zoom command 69
356

3

HTLPIC menu hot keys

Key Meaning
Alt-O Open editor file
Alt-N Clear editor file
Alt-S Save editor file
Alt-A Save editor file with new name
Alt-Q Quit to DOS
Alt-J DOS Shell
Alt-F Open File menu
Alt-E Open Edit menu
Alt-I Open Compile menu
Alt-M Open Make menu
Alt-R Open Run menu
Alt-T Open Options menu
Alt-U Open Utility menu
Alt-H Open Help menu
Alt-P Open Project file
Alt-W Warning level dialog
Alt-Z Optimization menu
Alt-D Command.com
F3 Compile and link single file
Shift-F3 Compile to object file
Ctrl-F3 Compile to assembler code
Ctrl-F4 Retrieve last file
F5 Make target program
Shift-F5 Re-link target program
Ctrl-F5 Re-make all objects and target program
Alt-P Load project file
Shift-F7 User defined command 1
Shift-F8 User defined command 2
Shift-F9 User defined command 3
Shift-F10 User defined command 4
F2 Search in edit window
Alt-X Cut to clipboard
Alt-C Copy to clipboard
Alt-V Paste from clipboard

PICL Options

Option Meaning

-processor Define the processor
-Aspec Specify offset for ROM
-A-option Specify -option to be passed directly to the assembler
-AAHEX Generate an American Automation symbolic HEX file
-ASMLIST Generate assembler .LST file for each compilation
-BIN Generate a Binary output file
-C Compile to object files only
-CKfile Make OBJTOHEX use a checksum file
-CRfile Generate cross-reference listing
-D24 Use truncated 24-bit floating point format for doubles
-D32 Use IEEE754 32-bit floating point format for doubles
-Dmacro Define pre-processor macro
-E Use “editor” format for compiler errors
-Efile Redirect compiler errors to a file
-E+file Append errors to a file
-FAKELOCAL Produce MPLAB-specific debug information
-Gfile Generate enhanced source level symbol table
-HELP Print summary of options
-ICD Compile code for MPLAB-ICD
-Ipath Specify a directory pathname for include files
-INTEL Generate an Intel HEX format output file (default)
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-MOT Generate a Motorola S1/S9 HEX format output file
-MPLAB Specify compilation and debugging under MPLAB IDE
-Nsize Specify identifier length
-NORT Do not link standard runtime module
-NO_STRING_PACK Disables string packing optimizations
-O Enable post-pass optimization
-Ofile Specify output filename
-P Preprocess assembler files
-PRE Produce preprocessed source files only
-PROTO Generate function prototype information
-PSECTMAP Display complete memory segment usage after linking
-Q Specify quiet mode
-RESRAMranges Reserve the specified RAM address ranges.
-RESROMranges Reserve the specified ROM address ranges.
-S Compile to assembler source files only
-SIGNED_CHAR Make the default char signed.
-STRICT Enable strict ANSI keyword conformance
-TEK Generate a Tektronix HEX format output file
-Usymbol Undefine a predefined pre-processor symbol
-UBROF Generate an UBROF format output file
-V Verbose: display compiler pass command lines
-Wlevel Set compiler warning level
-X Eliminate local symbols from symbol table
-Zg Enable global optimization in the code generator

	Introduction
	1.1 Compiler Limitations
	1.2 Typographic conventions
	1.3 Using This Manual

	Tutorials
	2.1 Overview of the compilation process
	2.1.1 Compilation
	2.1.2 The compiler input
	2.1.2.1 Steps before linking
	2.1.2.2 The link stage

	2.2 Psects and the linker
	2.2.1 Psects
	2.2.1.1 The psect directive
	2.2.1.2 Psect types

	2.3 Linking the psects
	2.3.1 Grouping psects
	2.3.2 Positioning psects
	2.3.3 Linker options to position psects
	2.3.3.1 Placing psects at an address
	2.3.3.2 Exceptional cases
	2.3.3.3 Psect classes
	2.3.3.4 User-defined psects

	2.3.4 Issues when linking
	2.3.4.1 Paged memory
	2.3.4.2 Separate memory areas
	2.3.4.3 Objects at absolute addresses

	2.3.5 Modifying the linker options

	2.4 Addresses used with the PIC
	2.4.1 Code addresses
	2.4.2 Data addresses
	2.4.3 Bit addresses

	Using HTLPIC
	3.1 Introduction
	3.1.1 Starting HTLPIC

	3.2 The HI-TECH Windows User Interface
	3.2.1 Environment variables
	3.2.2 Hardware Requirements
	3.2.3 Colours
	3.2.4 Pull-Down Menus
	3.2.4.1 Keyboard Menu Selection
	3.2.4.2 Mouse Menu Selection
	3.2.4.3 Menu Hot Keys

	3.2.5 Selecting windows
	3.2.6 Moving and Resizing Windows
	3.2.7 Buttons
	3.2.8 The Setup menu

	3.3 Tutorial: Creating and Compiling a C Program
	3.4 The HTLPIC editor
	3.4.1 Frame
	3.4.2 Content Region
	3.4.3 Status Line
	3.4.4 Keyboard Commands
	3.4.5 Block Commands
	3.4.6 Clipboard Editing
	3.4.6.1 Selecting Text
	3.4.6.2 Clipboard Commands

	3.5 HTLPIC menus
	3.5.1 <<>> menu
	3.5.2 File menu
	3.5.3 Edit menu
	3.5.4 Options menu
	3.5.5 Compile menu
	3.5.6 Make menu
	3.5.7 Run menu
	3.5.8 Utility menu
	3.5.9 Help menu

	Command Line Compiler Driver
	4.1 Long Command Lines
	4.2 Default Libraries
	4.3 Standard Run-Time Code
	4.4 PICL Compiler Options
	4.4.1 -processor: Define processor
	4.4.2 -Aspec: Specify offset for ROM
	4.4.3 -A-option: Specify Extra Assembler Option
	4.4.4 -AAHEX: Generate American Automation Symbolic Hex
	4.4.5 -ASMLIST: Generate Assembler .LST Files
	4.4.6 -BIN: Generate Binary Output File
	4.4.7 -C: Compile to Object File
	4.4.8 -CKfile: Generate Check Sum
	4.4.9 -CRfile: Generate Cross Reference Listing
	4.4.10 -D24: Use 24-bit Doubles
	4.4.11 -D32: Use 32-bit Doubles
	4.4.12 -Dmacro: Define Macro
	4.4.13 -E: Define Format for Compiler Errors
	4.4.13.1 Using the -E Option
	4.4.13.2 Modifying the Standard -E Format
	4.4.13.3 Redirecting Errors to a File

	4.4.14 -Efile: Redirect Compiler Errors to a File
	4.4.15 -FAKELOCAL
	4.4.16 -Gfile: Generate Source Level Symbol File
	4.4.17 -HELP: Display Help
	4.4.18 -ICD
	4.4.19 -Ipath: Include Search Path
	4.4.20 -INTEL: Generate INTEL Hex File
	4.4.21 -Llibrary: Scan Library
	4.4.21.1 Printf with Additional Support for Longs and Floats

	4.4.22 -L-option: Specify Extra Linker Option
	4.4.23 -Mfile: Generate Map File
	4.4.24 -MOT: Generate Motorola S-Record HEX File
	4.4.25 -MPLAB: Compile and Debug using MPLAB IDE
	4.4.26 -Nsize: Identifier Length
	4.4.27 -NORT: Do Not Link Standard Runtime Module
	4.4.28 -NO_STRING_PACK: Disable string packing optimizations
	4.4.29 -O: Invoke Optimizer
	4.4.30 -Ofile: Specify Output File
	4.4.31 -P: Pre-process Assembly Files
	4.4.32 -PRE: Produce Pre-processed Source Code
	4.4.33 -PROTO: Generate Prototypes
	4.4.34 -PSECTMAP: Display Complete Memory Usage
	4.4.35 -q: Quiet Mode
	4.4.36 -RESRAMranges[,ranges]
	4.4.37 -RESROMranges[,ranges]
	4.4.38 -S: Compile to Assembler Code
	4.4.39 -SIGNED_CHAR: Make Char Type Signed
	4.4.40 -STRICT: Strict ANSI Conformance
	4.4.41 -TEK: Generate Tektronix HEX File
	4.4.42 -Umacro: Undefine a Macro
	4.4.43 -UBROF: Generate UBROF Format Output File
	4.4.44 -V: Verbose Compile
	4.4.45 -Wlevel: Set Warning Level
	4.4.46 -X: Strip Local Symbols
	4.4.47 -Zg[level]: Global Optimization

	Features and Runtime Environment
	5.1 Divergence from the ANSI C Standard
	5.2 Processor Support
	5.3 Standard Libraries
	5.3.1 Limitations of Printf

	5.4 Output File Formats
	5.5 Symbol Files
	5.6 Predefined Macros
	5.7 Header File Definitions
	5.8 Configuration Fuses
	5.9 ID Locations
	5.10 EEPROM Data
	5.11 Bit Instructions
	5.12 Supported Data Types
	5.12.1 Radix Specifiers and Constants
	5.12.2 Bit Data Types
	5.12.2.1 Using Bit-Addressable Registers

	5.12.3 8-Bit Integer Data Types
	5.12.4 16-Bit Integer Data Types
	5.12.5 32-Bit Integer Data Types
	5.12.6 Floating Point

	5.13 Absolute Variables
	5.14 Structures and Unions
	5.14.1 Structure Qualifiers
	5.14.2 Bit Fields in Structures

	5.15 Strings In ROM and RAM
	5.16 Const and Volatile Type Qualifiers
	5.17 Placement and access of ROM objects
	5.17.1 Midrange PICs

	5.18 Special Type Qualifiers
	5.18.1 Persistent Type Qualifier
	5.18.2 Bank1 Type Qualifier

	5.19 Pointers
	5.19.1 Midrange Pointers
	5.19.2 Combining Type Qualifiers and Pointers
	5.19.3 Const Pointers

	5.20 Implementation-defined behaviour
	5.20.1 Shifts applied to integral types
	5.20.2 Division and modulus with integral types
	5.20.3 Integral Promotion

	5.21 Interrupt Handling in C
	5.21.1 Midrange Interrupt Functions
	5.21.2 Context Saving on Interrupts
	5.21.2.1 MidRange Context Saving

	5.21.3 Context Retrieval
	5.21.4 Interrupt Levels
	5.21.5 Enabling Interrupts

	5.22 Mixing C and Assembler Code
	5.22.1 External Assembly Language Functions
	5.22.2 Accessing C objects from within assembler
	5.22.3 #asm, #endasm and asm()

	5.23 Signature Checking
	5.24 Linking Programs
	5.25 Memory Usage
	5.26 Register Usage
	5.27 Function Argument Passing
	5.28 Function Return Values
	5.28.1 8-Bit Return Values
	5.28.2 16-Bit and 32-bit Return Values
	5.28.3 Structure Return Values

	5.29 Function Calling Convention
	5.30 Local Variables
	5.30.1 Auto Variables
	5.30.2 Static Variables

	5.31 Compiler Generated Psects
	5.32 Runtime startup Modules
	5.32.1 The powerup Routine

	5.33 Linker-Defined Symbols
	5.34 Preprocessor Directives
	5.35 Pragma Directives
	5.35.1 The #pragma jis and nojis Directives
	5.35.2 The #pragma printf_check Directive
	5.35.3 The #pragma psect Directive
	5.35.4 The #pragma regsused Directive
	5.35.4.1 The #pragma switch Directive

	5.36 Standard I/O Functions and Serial I/O
	5.37 MPLAB-specific Debugging Information

	PICC Lite Macro Assembler
	6.1 Assembler Usage
	6.2 Assembler Options
	6.3 PIC Assembly Language
	6.3.1 Additional Mnemonics
	6.3.2 Assembler Format Deviations
	6.3.3 Character Set
	6.3.4 Constants
	6.3.4.1 Numeric Constants
	6.3.4.2 Character Constants

	6.3.5 Delimiters
	6.3.6 Special Characters
	6.3.7 Identifiers
	6.3.7.1 Significance of Identifiers
	6.3.7.2 Assembler-Generated Identifiers
	6.3.7.3 Location Counter
	6.3.7.4 Register Symbols
	6.3.7.5 Labels
	6.3.7.6 Symbolic Labels
	6.3.7.7 Numeric Labels

	6.3.8 Strings
	6.3.9 Expressions
	6.3.10 Statement Format
	6.3.11 Program Sections
	6.3.12 Assembler Directives
	6.3.12.1 GLOBAL
	6.3.12.2 END
	6.3.12.3 PSECT
	6.3.12.4 ORG
	6.3.12.5 EQU
	6.3.12.6 SET
	6.3.12.7 DEFL
	6.3.12.8 DB
	6.3.12.9 DW
	6.3.12.10 DS
	6.3.12.11 FNADDR
	6.3.12.12 FNARG
	6.3.12.13 FNBREAK
	6.3.12.14 FNCALL
	6.3.12.15 FNCONF
	6.3.12.16 FNINDIR
	6.3.12.17 FNSIZE
	6.3.12.18 FNROOT
	6.3.12.19 IF, ELSEIF, ELSE and ENDIF
	6.3.12.20 MACRO and ENDM
	6.3.12.21 LOCAL
	6.3.12.22 ALIGN
	6.3.12.23 REPT
	6.3.12.24 IRP and IRPC
	6.3.12.25 PAGESEL
	6.3.12.26 PROCESSOR
	6.3.12.27 SIGNAT

	6.3.13 Macro Invocations
	6.3.14 Assembler Controls
	6.3.14.1 COND
	6.3.14.2 GEN
	6.3.14.3 INCLUDE
	6.3.14.4 LIST
	6.3.14.5 NOCOND
	6.3.14.6 NOGEN
	6.3.14.7 NOLIST
	6.3.14.8 TITLE
	6.3.14.9 PAGELENGTH
	6.3.14.10 PAGEWIDTH
	6.3.14.11 SUBTITLE

	Linker and Utilities Reference Manual
	7.1 Introduction
	7.2 Relocation and Psects
	7.3 Program Sections
	7.4 Local Psects
	7.5 Global Symbols
	7.6 Link and load addresses
	7.7 Operation
	7.7.1 Numbers in linker options
	7.7.2 -Aclass=low-high,...
	7.7.3 -Cx
	7.7.4 -Cpsect=class
	7.7.5 -Dclass=delta
	7.7.6 -Dsymfile
	7.7.7 -Eerrfile
	7.7.8 -F
	7.7.9 -Gspec
	7.7.10 -Hsymfile
	7.7.11 -H+symfile
	7.7.12 -Jerrcount
	7.7.13 -K
	7.7.14 -I
	7.7.15 -L
	7.7.16 -LM
	7.7.17 -Mmapfile
	7.7.18 -N, -Ns and-Nc
	7.7.19 -Ooutfile
	7.7.20 -Pspec
	7.7.21 -Qprocessor
	7.7.22 -S
	7.7.23 -Sclass=limit[, bound]
	7.7.24 -Usymbol
	7.7.25 -Vavmap
	7.7.26 -Wnum
	7.7.27 -X
	7.7.28 -Z

	7.8 Invoking the Linker
	7.9 Map Files
	7.9.1 Call Graph Information

	7.10 Librarian
	7.10.1 The Library Format
	7.10.2 Using the Librarian
	7.10.3 Examples
	7.10.4 Supplying Arguments
	7.10.5 Listing Format
	7.10.6 Ordering of Libraries
	7.10.7 Error Messages

	7.11 Objtohex
	7.11.1 Checksum Specifications

	7.12 Cref
	7.12.1 -Fprefix
	7.12.2 -Hheading
	7.12.3 -Llen
	7.12.4 -Ooutfile
	7.12.5 -Pwidth
	7.12.6 -Sstoplist
	7.12.7 -Xprefix

	7.13 Cromwell
	7.13.1 -Pname
	7.13.2 -D
	7.13.3 -C
	7.13.4 -F
	7.13.5 -Okey
	7.13.6 -Ikey
	7.13.7 -L
	7.13.8 -E
	7.13.9 -B
	7.13.10 -M
	7.13.11 -V

	7.14 Memmap
	7.14.1 Using MEMMAP
	7.14.1.1 -P
	7.14.1.2 -Wwid

	Error Messages
	Library Functions
	ABS
	ACOS
	ASCTIME
	ASIN
	ATAN
	ATAN2
	ATOF
	ATOI
	ATOL
	CEIL
	COS
	COSH, SINH, TANH
	CTIME
	DI, EI
	DIV
	EEPROM_READ, EEPROM_WRITE
	EVAL_POLY
	EXP
	FABS
	FLOOR
	FREXP
	GET_CAL_DATA
	GMTIME
	ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.
	KBHIT
	LDEXP
	LDIV
	LOCALTIME
	LOG, LOG10
	MEMCHR
	MEMCMP
	MEMCPY
	MEMMOVE
	MEMSET
	MODF
	PERSIST_CHECK, PERSIST_VALIDATE
	POW
	PRINTF
	RAND
	SIN
	SPRINTF
	SQRT
	SRAND
	STRCAT
	STRCHR, STRICHR
	STRCMP, STRICMP
	STRCPY
	STRCSPN
	STRLEN
	STRNCAT
	STRNCMP, STRNICMP
	STRNCPY
	STRPBRK
	STRRCHR, STRRICHR
	STRSPN
	STRSTR, STRISTR
	STRTOK
	TAN
	TIME
	TOLOWER, TOUPPER, TOASCII
	VA_START, VA_ARG, VA_END
	XTOI

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

