Interfacing C with 8051 assembly code
IN PSOC® Creator for PSoC3
User’s Guide

6.115 Power Electronics Laboratory
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

Introduction

Cypress’ PSoC (Programmable System on Chip) is a microcontroller with internal peripherals
(timers, PWM generators, DACs, etc.) as well as configurable digital blocks. Its design
environment PSoC Creator is free software that provides you with a space to link your C code
and your configurations of the digital peripherals, GPIO pins, clocking resources, etc. See the
powerpoint Introduction to PSoC Creator for more information on getting started with Creator.

N —— T
{2} ADC_DAC - PSoC Creator 2.1 [CAUsers\Lizi\Dropbox\Labapart6 (1NADC_DAC.cydsn\TepDesign\TopDesign.cysch] | e)
File Edit View Debug Project Build Tools Window Help
BT g L ' (] 2 - -
ENaSHdd@ S0 & @ X |9 e 5 i @ @ ipebug]
- o 2 h | B S Microsoft Sans Serif 20 B rUlSISS|A- S-S 00042 oS B
| Workspace Explorer (L proj... v B X TopDesign.cysch | ADC_DAC.cydnr | + 4 b x ||Component Catalog (174 c... = & X|
- - (W
}”Ef"”i"“’e ‘ADCfDA‘;;:[’gs i ﬁﬁﬁFQ&E&’%’L’?&’&%‘%‘E&@@ R
E “*Project "ADC_| o the.
B e 1 e —
9 ADC_DAC.cydur 3|13 P b2 Cypress Componant Catslog
iles Q — G %8 Analog
E@ Hesder Files 3 < s /681 CapSense
1o devieen I | = /88 Commurnications
EHL) Source Files S|~) 1 g9 Digtal
el msinc 2| B s e o bl of oo @ Display
=00 Generated_Source Bl ool Bl A o ool a1 Fiters
D PSoC3 HII=! 88 Ports and Pins
BHED IESGEE1 g 88 Power Supervision
& FEEE s &% System
E . &8 Themal Management
El |
b P, .
o
s
sy
Componert Previen
| Notice List
€ 0Errors||[3, 9 Warnings| [2 Motes | Go To Error | View Details
Deseription File Eror Locstion ~ [o
14| mpr MO037:Linused pieces of the design have been optimized out. See the Tech of the report file for details ‘ | o
. |plm MDO37 Certain internal anslog resources use the following pins for preferred routing: P1[Z], PIA] | | |-
m v |+ output | Notice List |
Ready {¥=-84,¥=108) OErrors 9Warnings 2 Notes

In this document, you will learn how to include 8051 assembly routines in your C code for a
PSoC 3 device (8051 core). This is useful if:

a) You have assembly code already written that you wish to use

b) You need to improve the speed of a particular function

¢) You want to manipulate SFRs or memory-mapped 1/O devices directly from assembly

d) You are a 6.115 student studying 8051 assembly, and want to use it in the bulk of your
final project!

Writing your assembly file

Creator uses the C compiler Keil, so in order to write an 8051 routine, you have to obey Keil’s
compiler rules.

You can pass values to and from your assembly function with specific registers. Also, your
assembly function will have access to any global variables defined in your C code and your C
code will have access to any public variables defined in your assembly code.

First, | created a new 8051 source file: Right click on Source Files—>New Item—>8051 Keil
Assembly File. Name the file blinky.a51 and click OK.

r ™
New Htem - Source Files ==
Templates:

PSoC Creator Installed Templates
k=] 2051 Keil Assembly File G| CFie T c# Fie
|2 Design Wide Resource File "= GNU ARM Assembly File
] Header Fie [¥] Himl File P Keil Resnirancy Fils
"2 RealView ARM Assembly File % Resx File = Text Flle
Yl File

Creates an empty 8051 Kzil assembly file.

Name: blinky.a51

oK | [coneat

Here is an assembly function written in Creator. Several A51 assembler statements are needed
and are included with comments indicating the function of each non-familiar line:

$NOMOD51

SINCLUDE

_COOL SEGMENT CODE

RSEG _COOL

PUBLIC inc count

_inc _count:

END

(PSoC3_8051.1inc)

Suppress SFR definitions for an 8051 device
Use definitions in this include file

This line declares a segment of 8051 code.
Underscore before name of function with
arguments passed in registers, according
to Keil rules. The segment name is COOL
and it is stored in the CODE memory space.
This line selects this code segment.

Specifies that this function can be used in
other object modules (ie. your C code)

Again, the initial underscore means that this
function has arguments passed in registers.

Your assembly function here.

mov A, R7
CPL A
mov RO, #40h
loop back0:
mov R1,
loop backl:
mov R2, #O0FFh
loop back2:
djnz R2, loop back2
djnz R1, loop backl
djnz RO, loop_ back0
mov R7, A
ret

’

Marks the end of the input file for assembler

Writing your C code

Before you write any C code, you should place a digital output pin on the Cypress schematic
sheet. Click on TopDesign.cysch, find the Component catalog on the right and click on Ports and
Pins. Drag a digital output pin onto the schematic sheet and name it LED. We do not need a
hardware connection.

i} Assembly8051-000 - reator 21 [CA.. reator\Assem cydsn\TopDesign\TopDesign.cysc _— v l =
Assembly8051-000 - PSoC Ci 2.1 [CA.\PSoC Creator\AssemblyB05L.cydsniTopDesigniTopD h] EE] = |
File Edit View Debug Project Build Tools Window Help
A Ga@ X |9 o a3t - .
J o448l 3 (@ X E% Debug
- 2 oF G &) iMicrosoft Sans Seif |‘ |31".%%__ - o0 Gk H 42 koS b G I
\mewte Explorer (1 project) * 8 %|| - startpage = ign.cysch | main.c | device.h | binky.a51 | PSoC3_805Linc ~ 4 b x_ |Component Catalog (174 c.. v 1 %/
5 i A EBREGW
[E] “Workspace ‘AssemblyB8051-000 (1 Proje i - N 8 8 E
£ [Pa] “Project "Assembly805T [CYBC3E| | 4 Configure 'cy_pins’ [
. 2 0 tation)/ Cancspt]/ Cypress 4 D
. [&]' TopDesign.cysch £
P AssemblyB051.cydwr Fa= Name: [I=0] gr:zs‘[:umpuneﬂl Catalog
o slog
5o Ea:e'_':"e:) E ins qb || weoe CapSense
B jevice. 3 = e » i
&6 Souroa Files £ L Number of Pins: 1 | >< B+ 4]0 1] g g“’gr;;“““:a“m
H
2] blinky.251 # T A " Type | General | Input | output &8 Display
[g] maine o | “-E LED_0 [Anslog Tors %8 Fiters
=+ Generated_Source b %8 Ports and Pins
53 PSC3 G [”] Digtal Input . 1B} Analog Pin [v1.70]
EHED ey boot a e g L -2} Digital Bidirectional Pin [v1.7
sl Coph ; 23 3 |2 Digital Input Pin [v1.70]
Ap] E‘/Soﬂb«sm)(ell a51 3 [¥] Digital Output 5 Dital Outpet P v1.70)
9 CyDmace]] HW Comection 28 Power Supervision
8 CyDmach El [7] Output Enable -8 System
~|e] CyFlashc -8 Themal Management
~[n] CyFlashh [] Bidirectional
g] cytibe [7] Show Annotation Terminal L4
~[n] Cylibh
-] cymem.a51 b
B o o | o] e
6] eyPme =« n r
-[n eyPmh
o] = I U Component Preview
<] CySpee Page 1 4b
W] CySpch
[eytypesh | Notice List - RX
8] eyutits e & 0 Errors] [83 0 Warnings | [0 Notes| Go 7o Frror | View Detsils
"E giﬁ‘;“ﬁ;: ; Description File EirocVocaiion Datasheet
[Y
-la
. i — v |= Output | Notice List |
Ready {X=464,v=305} OErrors 0 Warnings 0 Notes

By linking this internal pin to a physical pin on the chip, we can send our PWM signal to the pin
attached to the LED on the kit. We can vary the duty cycle of this blinking as usual—by
changing the values of the registers R0O-R2 in the above code.

In the main.c source file, you should use your assembly function inc_count. You can pull up the
Pins datasheet for the component APIs. There you will find the Pin_Write(x) function to write a
value directly to an output pin.

#include <device.h>

{
uint8 count = 0;
while (1)
{
count = inc count (count);
LED Write (count) ;
}
}

The last thing we need to do is include a prototype of our function in the device.h header file.
Open this file and add your routine prototype:

#ifndef DEVI CE H
#define DEVICE H
#include <project.h>

uint8 inc_ count (uint8 count); /* inc_count prototype */

#endif

Dealing with Global Variables

Global variables you create in your C programs are stored in the memory area specified or in the
default memory area implied by the memory model. The assembly label for the variable is the
variable name. For example, for the following global variables:

unsigned int bob;

unsigned char jim;

the compiler generates the following assembler code:

2DT?MAIN SEGMENT DATA
PUBLIC jim
PUBLIC bob

RSEG ?DT?MAIN
bob: DS 2
jim: DS 1

; unsigned int bob;

; unsigned char jim;

To access these variables in assembler, you must create an extern declaration that matches the
original declaration. For example:

EXTERN DATA(jim)

If you use in-line assembler, you may simply use C extern variable declarations to generate the
assembler EXTERN declarations.

You may access global variables in assembler using their label names. For example:

MOV A, jim

Note:

Type information is not transmitted to your assembler routines. Assembly code must explicitly
know the type of the global variable and the order in which it is stored.

The EXTERN definitions for a C external variable are generated only if the variable is
referenced by the C code in the module. If an external variable is only referenced by in-line
assembly code, you must declare them in in-line assembly code within that module.

Passing in Registers

C functions may pass parameters in registers and fixed memory locations. A maximum of 3
parameters may be passed in registers. All other parameters are passed using fixed memory
locations. The following tables define which registers are used for passing parameters.

char, int,

Arg Number 1-byte ptr 2-byte ptr long, float generic ptr

1 R7 R6 & R7 R4—R7 R1—R3
(MSB in R6,LSB (Mem type in R3, MSB in
in R7) R2, LSB in R1)

2 R5 R4 & R5 R4—R7 R1—R3
(MSB in R4,LSB (Mem type in R3, MSB in
in R5) R2, LSB in R1)

3 R3 R2 & R3 R1—R3
(MSB in R2,LSB (Mem type in R3, MSB in
in R3) R2, LSB in R1)

The following examples clarify how registers are selected for parameter passing.

Declaration Description

funcl (The first and only argument, a, is passed in registers R6 and R7.

int a)

func2 (The first argument, b, is passed in registers R6 and R7. The second

int b, argument, ¢, is passed in registers R4 and R5. The third argument, d,

int c, is passed in registers R1, R2, and R3.

int *d)

func3 (The first argument, e, is passed in registers R4, R5, R6, and R7. The

long e, second argument, f, cannot be located in registers since those

long f) available for a second parameter with a type of long are already used
by the first argument. This parameter is passed using fixed memory
locations.

func4 (The first argument, g, passed in registers R4, R5, R6, and R7. The

float g, second parameter, h, cannot be passed in registers and is passed in

char h) fixed memory locations.

Register Usage

Assembler functions may change all register contents in the currently selected register bank as
well as the contents of the ACC, B, DPTR, and PSW registers.

When invoking a C function from assembly, assume that these registers are destroyed by the C
function that is called.

